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Preface to the First Edition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Computer vision is a subfield of artificial intelligence that enables the 
understanding of the content of digital images, such as photographs. Currently, 
machine learning is making impressive inroads in tackling challenges posed by 
computer vision related tasks, promising further impressive advances. 

Speaking of computer vision, two modes of books frequently appears (i) 
reference-based textbooks written by experts, who often are academics, targeting 
students and practitioners, and (ii) programming oriented books (i.e., play books) 
written by experts, who often are developers and engineers, and designed to be 
used as a reference by practitioners. Whereas the former mainly focus on general 
methods and theory (Maths) and not on the practical concerns of the problems and 
the applications of methods (code), the latter focus mainly on techniques and 
practical concerns of the problem solving where the focus is placed on examples 
of codes and standard libraries.  

Although programme-based books briefly describe techniques with relevant 
theory (Maths), they probably do not predispose themselves for use as primary 
reference. In this regard, Dr. Jason Brownlee, a machine learning specialist who 
teaches developers how to obtain results from modern machine learning methods 
via hands-on tutorials recommends the work of Richard Szeliski (2010; Computer 
Vision: Algorithms and Applications) since it provides a short, focused, and 
readable introduction to computer vision complete with relevant theory, without 
getting too bogged down. For programmers, he suggests Jan Erik Solem’s (2012; 
Programming Computer Vision with Python) since it focuses on real computer 
vision techniques with standard (or close enough) Python libraries. It is an 
excellent starting point for those who want to get their hands dirty with computer 
vision. 

Our contribution, therefore, intends to be a go between these two types of 
books. On the one hand, it is like a programmer’s book presenting many different 
techniques illustrated by a large number of examples, accompanied by detailed 
discussions on the Mathematics behind the different methods. The codes of the 
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algorithms are given in Python as well as in Mathematica form. Besides, since the 
recent version of Mathematica 11 integrates Python, most of the codes are blended 
as hybrid codes. Mathematica is an incredibly powerful platform with a fun and 
intellectually pleasing language, but is expensive and closed source. Python is a 
convenient, powerful language with a lot of support from the developer 
community. For as long as the two have existed people have been trying to tie 
them together, so that one can utilize the integrated advantages of both languages. 

This book is divided into five chapters. The first one deals with dimension 
reduction techniques of visual objects where besides the standard methods; it 
includes Independent Component Analysis, AutoEncoding and Fractal 
Compression. The second chapter discusses classification methods that include 
Support Vector Classification. In the third chapter, different clustering techniques 
are demonstrated, like Hierarchical Clustering, Density-Based Spatial Clustering 
of Applications with Noise and Spectral Clustering. The fourth chapter presents 
different regression techniques, where different robust regression models such as 
Expectation Maximization, RANSAC and Symbolic Regression are also 
discussed. The last chapter provides a deep insight into applications of neural 
networks in computer vision. Besides the standard network types, Deep Learning 
and Convolutional Networks are also discussed. At the end of every chapter, the 
considered methods are compared and qualified from different practical points of 
views. 
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Preface to the Second Edition 

 
This second edition of Hybrid Imaging and Visualization book adds four new 
topics: Fisher discriminant, which is a linear discriminant that can provide an 
optimal separation of objects (Sect. 2.6), and converting time series into images 
thereby making it possible to employ convolution neural network to classify time 
series effectively (Sect. 3.6). Optimizing hyperparameters is an important task in 
machine learning and mostly, stochastic global methods are used. Among others, 
the fancy Black Hole algorithm is introduced and compared with other more usual 
methods (Chap. 6), and ChatGPT a novel and in the last two years very popular 
Generative AI technology is introduced and its ability is illustrated (Chap. 7). 

Fisher discriminant presented in Sect. 2.6 can be used as a supervised learning 
classifier. Given labeled data, the classifier can find a set of weights to draw a 
decision boundary, classifying the data. Fisher’s linear discriminant attempts to 
find the vector that maximizes the separation between classes of the projected data 
similar to the support vector machine (SVM) method. Often, in the real world, a 
linear discriminant is not complex enough to separate datasets effectively. To deal 
with nonlinear separations, one should employ Fisher discriminant with different 
kernels. Different examples are given in this section to demonstrate this technique. 

Converting time series into image discussed in Sect. 3.6 is useful in case of 
classification as well as clustering of time series since convolutional neural 
network (CNN) can handle images very effectively. In this section, the Gramian 
Angular Field method is introduced and demonstrated using a toy example. 
Optimizing hyperparameters presented in Chap. 6 is very important for efficient 
use of Machine Learning (ML) algorithms, although it requires heavy computing 
load. The problem comes from two sources (a) the basic algorithm should be 
repeated many times, and (b), in most cases, there are more local optimums, 
consequently global optimization methods should be employed. The efficiency of 
different global optimization techniques is demonstrated using the case of an 
image classification problem. 
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Finally, the ChatGPT, which is nowadays the most popular AI topic is 
introduced in Chap. 7, where its principle and application areas are discussed and 
demonstrated. Perhaps the most perplexing issue is how one employs it for writing 
computer codes and getting an explanation of its detailed meaning. One should 
however keep in mind that the more one is experienced in computer programming 
and able to define the characteristics of the needed code, the more efficient the 
ChatGPT results will be. 
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Introduction 

1  Computer Vision and Machine Learning 

Computer vision (also known as machine vision; Jain et al. 1995), a 
multidisciplinary field that is broadly a subfield of artificial intelligence and 
machine learning has as one of its goals the extraction of useful information from 
images. A basic problem in computer vision, therefore, is to try to understand, i.e., 
“see” the structure of the real world from a given set of images through use of 
specialized methods and general learning algorithms (e.g., Hartley and Zisserman 
2003; see Fig. 1). Its applications are well documented in Jähne and Haußecker 
(2000), where it finds use e.g., in human motion capture (Moeslund and Granum 
2001). With the plethora of unmanned aircraft vehicles (UAVs) or drones (see 
Awange 2018; Awange and Kiema 2019), computer vision is stamping its 
authority in the UAV field owing to its intelligent capability (Al-Kaff et al. 2018). 
Several publications abound on computer vision, e.g., on algorithms for image 
processing (e.g., Parker 2011; Al-Kaff et al. 2018), pattern recognition/languages 
in computer vision (e.g., Chen 2015), feature extraction (Nixon and Aguado 2012) 
and among others.  

On its part, Machine Learning (ML) is the employment of statistical 
techniques by computers to learn specific and complex tasks from given data that 
are discriminated into learnt and defined classes (Anantrasirichai et al. 2018, 
2019). They have widely been used, e.g., for landslides studies (Yilmaz, 2010), 
vegetations (Brown et al. 2008), earthquakes (Adeli and Panakkat 2009), land 
surface classificatios (Li et al. 2014) and for classification of volcanic deformation 
(Anantrasirichai et al. 2018, 2019). Lary et al. (2016) provides a good exposition 
of its application. 

Traditionally, computer vision’s contributions are largely grouped into two 
categories; textbook-based that focus on methods and theory rather than on the 
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practicality, and programming-based that focus on the techniques and the 
practicality of solving the problems. There is hardly any book that tries to bring 
the two together; i.e., methods/theory on the one hand, and techniques/practicality 
(i.e., codes) on the other hand. This present book attempts to fill this missing gap 
by treating computer vision as a machine-learning problem (Fig. 1), and 
disregarding everything we know about the creation of an image. For example, it 
does not exploit our understanding of perspective projection. 

 

 
Fig. 1 Relationship between Computer Vision, Artificial Intelligent and Machine Learning 

 
In general the image processing chain contains five different tasks: 

reprocessing, data reduction, segmentation, object recognition and image 
understanding. Optimisation techniques are used as a set of auxiliary tools that are 
available in all steps of the image processing chain, see Fig. 2. 

 

 

 
Fig. 2 The image processing chain containing the five different tasks 

 
Many popular computer vision applications involve trying to recognize 

things in photographs; for example: 
1. Object Classification: What broad category of objects are in this photograph? 
2. Object Identification: Which type of a given object is in this photograph? 
3. Object Verification: Is the object in the photograph? 
4. Object Detection: Where are the objects in the photograph? 

 Introductionxviii



5. Object Landmark Detection: What are the key points for the object in the 
photograph? 

6. Object Segmentation: What pixels belong to the object in the image? and  
7. Object Recognition: What objects are in this photograph and where are they? 

Let us consider some examples, where Machine Learning techniques are 
applied to solving these computer vision problems. 
 
Example 1 (Segmentation as Clustering) 

Segmentation is any operation that partitions an image into regions that are 
coherent with respect to some criterion. One example is the segregation of 
different textures. The following is an image that highlights bacteria (Fig. 3). 
Now, we would like to remove the background in order to get clear information 
about the size and form of the bacteria (Fig. 4). 
 

⇒  

img= ; 

Fig. 3 Original image 
 

⇒ RemoveBackground[img, {"Foreground", "Uniform"}] 

⇐   

Fig. 4 Image of bacterias after background removal 
 
Example 2 (Object Recognition as Classification) 

Object detection and recognition determines the position and, possibly, also the 
orientation and scale of specific objects in an image, and classifies them. In the 
image below, we can get information on the type of the image object (car) (Fig. 
5) and the possible subclasses probability. 
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⇒

 

img= ; 

Fig. 5 Original image 
 
⇒ data=ImageIdentify mg, can[i  r(WORD), 10, Probabi" lity"] 
⇐ → → →

→ →
→ →

<|convertible 0.725076,saloon 0.150854,coupe 0.0760313,

station wagon 0.0414005,hatchback 0.00342106, 

limousine 0.00153371,automobile 1.|>

 

 
 Example 3 (Image Understanding as Landmark Detection) 
 
Key points of an image can characterize the main feature locations of an image. 
This information can be employed for further image processing operations like 
image transform, classification and clustering. Consider the image in Fig. 6 below. 
 

⇒

 

img= ; 

Fig. 6 Original image of a cathedral 
 
Let us find the first thirty most important keypoints of the image (Fig. 7). 
⇒ →HighlightImage[img, ImageKeypoints[img, "MaxFeatures" 30]] 

⇐        

 

Fig. 7 The first thirty most important keypoints 
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2  Python and Mathematica 

 In this book, we employ Python (see e.g., Lutz 2001; Oliphant 2007) and 
Mathematica (e.g., Maeder 1991) as well as their blending, since Python code can 
be run from Mathematica directly. It is therefore appropriate to provide a brief 
discussion on them. This section is thus dedicated to their exposition. 

Python is now undoubtedly the most popular language for data science 
projects, while the Wolfram Language is rather a niche language in this concern. 
Consequently, Python is probably well-known to the reader compared to 
Mathematica. Given that Wolfram Language, widely used in academia (especially 
in physics, mathematics and financial analytics) has been around for over 30 years, 
it is actually older than both R and Python. 

The general principle of the Wolfram Language is that each function is very 
high level and automated as much as possible. For example the Classify[ ] function 
chooses the method automatically for the user. However, the user can also set it 
manually to something like Method → "RandomForest". The neural network 
function employed in Mathematica uses MxNet as a backend and is similar in its 
use to Keras in Python, although nicer to view. In general, the Machine Learning 
(ML) functions in Wolfram have a black box feeling to them, although there are 
lower level functions as well. One should therefore not blindly trust that the 
automatic solutions provided by the Predict and Classify functions are the one 
optimal solutions. They are often far from that and at best give baseline solutions 
on which to rely upon. One can then always use lower level functions to build 
one’s own custom ML solution with Wolfram or Python. However this ability of 
Mathematica has been improved very considerably in the last version released in 
2019. 

Mathematica has a very good system for documentation with all built-in 
functions. Also, the documentation itself is in notebooks so that one can quickly 
try something directly inside the documentation. The documentation in 
Mathematica is really good, but Python has a much bigger community with a 
widened network of support such that it is very likely that one finds an answer to 
a given problem. Also one can learn a lot through sites like Kaggle. The Wolfram 
Mathematica community in comparison is small and therefore it is harder to find 
relevant information, although the Mathematica community 
(https://mathematica.stackexchange.com) on stack exchange is really helpful. 

So let talk about the elephant in the room: the price. Mathematica is not free, 
it is actually quite expensive. Since Mathematica comes with all functions from 
the start, there is no need to buy additional “Toolboxes” like in Matlab. Now some 
bullet points for both languages in no particular order.  
 
Wolfram Mathematica 
 
− natural language interpretation 
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− pattern matching is powerful and prominent, for example in function 
declaration 

− interactive and very good documentation 
− consistent 
− symbolic, one can pass everything into a function (has a lot of advantages 

but also makes it harder to debug) 
− more advanced notebooks 
− no virtual environments and dependencies 
− works the same in every OS 
− most of the time there is only one obvious way to do things, for example 

plotting 
− Dynamic and manipulates functions for more interactivity 
− built-in knowledge 
− indices start at 1 
− instant API (although only in the Wolfram Cloud or one’s own Wolfram 

Enterprise Cloud) 
− hard to find a job / hard to recruit people who know Wolfram 
 

 Python 
 
− "There is a package for that" 
− closer to state of the art 
− codes are easier to read and to maintain 
− debug messages are usually more helpful 
− free 
− learn from Kaggle 
− lots of possibilities to deploy a trained model 
− a lot of online courses, podcasts and other resources 
− use of google-colab or Kaggle for learning ML without a local GPU 
− pandas is easier to use than the "Dataset" in Mathematica 
− bigger community, hence easier support. 

 
Learning another language is usually beneficial for one’s overall 

understanding of programming. So learning Wolfram might be a nice addition. We 
use the Wolfram language for quick prototyping of ideas and often come up with 
interesting combinations of data or feature engineering with the built-in 
knowledge of the Wolfram language. In addition, a quick Manipulate is fun and 
can help a lot in understanding the problem and data better. 

In Mathematica, with just one line, one can deploy our model as an 
Application Programming Interface (API) or web-app, although only in the 
Wolfram infrastructure, which might not fit inside one’s infrastructure or policy. 
Also, the high level functions Classify and Predict are too much of a black box 
and even standard scikit learn algorithms outperform them. 
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Overall, we hope that both languages inspire each other, as the jupyter 
notebook was certainly inspired by Mathematica. On the other hand Wolfram will 
have a difficult future if they continue to try to do everything on their own and 
lock users into their infrastructure. Therefore, a combination of the two languages 
will be more and more fruitful in the future. For more details see: Wolfram 
Language (Mathematica) vs. Python for Data Science Projects, 2019, ATSEDA 
AB (https://atseda.com/en/blog/2019/02/12/mathematica - and - python) 
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Chapter 1 
Dimension Reduction 

In this chapter we shall discuss some important lossy data reduction methods, 
which are very important in machine learning as well as digital in image 
processing and visualization. 

Dimension reduction is a method for representing a given dataset using a lower 
number of features (i.e. dimensions) while still capturing the original data’s 
meaningful properties. This amounts to removing irrelevant or redundant features, 
or simply noisy data, to create a model with a lower number of variables. 
Dimension reduction covers an array of feature selection and data compression 
methods used during preprocessing. While dimension reduction methods differ in 
operation, they all transform high-dimensional spaces into low-dimensional 
spaces through variable extraction or combination. 

High-dimensional datasets pose a number of practical concerns for machine 
learning algorithms, such as increased computation time, storage space for big 
data, etc. But the biggest concern is perhaps decreased accuracy in predictive 
models. Statistical and machine learning models trained on high-dimensional 
datasets often generalize poorly. 

All of these techniques are demonstrated by Python as well as Mathematica 
codes, respectively. 

1.1 Principal Component Analysis 

Basic Theory 

Principal Component Analysis (PCA) is a well-known and widely used technique 
applicable to a wide variety of applications such as dimensionality reduction, data 
compression, feature extraction, and visualization (Preisendorfer 1988). The basic 
idea is to project a dataset from many correlated coordinates onto fewer 
uncorrelated coordinates called principal components while still retaining most of 
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the variability present in the data (Baeriswyl and Rebertez 1997; Haroon and Rasul 
2009) on the one hand. On the other hand, it allows appropriate examinations by 
simplifying complex sets of interrelationships into two or more new variables 
(e.g., Stathis and Myronidis 2009; Awange et al. 2019). PCA has widely been used 
in many fields, e.g., climate and water storage change studies (Jolliffe and Cadima 
2016; Hu et al. 2017; Anyah et al. 2018; Awange et al. 2016), hydrometeorology 
(Awange et al. 2014), and even in teaching and learning studies (Awange et al. 
2017). Variants of PCA exist, e.g., rotated PCA (RPCA; Agutu et al. 2017, 2019). 
Detailed coverage of PCA, its variants as well as its higher version “the 
Independent Component Analysis (ICA)” are adequately covered, e.g., in 
Forootan (2016), and specially for image compresion in Martín-Clemente and 
Hornillo-Mellado (2006). In what follows, its principle and applications to data 
compression are presented. 

1.1.1  Principal Component 

Principal component analysis is a statistical procedure that converts data with 
possibly correlated variables into a set of linearly uncorrelated variables (e.g., 
Widman and Schär 1997). 

We seek a linear combination of the columns of a matrix X as 

1

p

j j
j

a x X a
=

=∑

with maximum variance, 
TVar ( ) =X a a S a

where S is the covariance matrix associated with the dataset consists of the row 
vectors of X. For this problem to have a well-defined solution, an additional 
restriction must be imposed and the most common restriction involves working 
with unit-norm vectors, i.e. requiring aTa = 1. The problem is equivalent to find 
the eigenvectors of S. Let us consider an X matrix of rows vectors with size of two, 

⇒ X=N[{{1, 2}, {2, 3}, {4, 10}}];X//MatrixForm

 
 ⇐  
 
 

1. 2.

2. 3.

4. 10.

First, we define a function, which standardizes the column vectors, (zero mean, 
and unit variance). 
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⇒ std[data_] := Module[{datatr = Transpose[data]},Transpose[N[

Table[Standardize[datatr[[i]]], {i, 1, Length[datatr]}]]]];

Applying this function, we get the centered column vectors with unit variance 

⇒ Xstd=std[X];Xstd//MatrixForm

− − 
 − − 
 
 

⇐
0.872872 0.688247

0.218218 0.458831

1.091089 1.147079

Figure 1.1 indicates that both coordinates are involved considerably in the 2D 
representation of the row vectors, 

⇒ MatrixPlot[Xstd]//Binarize

⇐

 

Fig. 1.1 Density plot of the elements of X 

We compute the covariance matrix (n is the numbers of row vectors) 

⇒ n=3;

⇒ S=(Xstd//Transpose).Xstd/(n-1);MatrixForm[S]

⇐
 
 
 

1. 0.976221

0.976221 1.

The covariance matrix shows strong correlation between the different 
coordinates of the 2D space. 

Alternatively we may use the built-in function 

⇒ Covariance[Xstd]
⇐ {{1.,0.976221},{0.976221,1.}}

The eigenvalues of the covariance matrix, 
⇒ Eigenvalues[S]

⇐ {1.97622,0.023779}

The eigenvalues are quite different. The eigenvectors are 
⇒ Eigenvectors[S]

⇐ {{-0.707107,-0.707107},{0.707107,-0.707107}}
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Then the principal components of X matrix are 
⇒ pc=Xstd.Eigenvectors[S];pc//MatrixForm

 
 − 


⇐
− 

0.130549 1.103878

0.170139 0.478746

0.039590 1.582624

It means that the principal components are the X projection into a space defined 
by the eigenvectors. Figure 1.2 shows the dominance of the second coordinates 

⇒ MatrixPlot[pc]//Binarize

⇐

 

Fig. 1.2 Density plot of the elements of the projection of X into the eigenspace 

The principal components can be computed via built-in function, too 
⇒ z=PrincipalComponents[Xstd];MatrixForm[z]

 
 − 
 − 

⇐



1.103878 0.130549

0.478747 0.170139

1.582624 0.039590

One can realize that the order of the column vectors are different. 
⇒ Map[Reverse[#]&,z]//MatrixForm

 
 − 


⇐
− 

0.130549 1.103878

0.170139 0.478746

0.039590 1.582624

In the eigenspace practically there is no correlation between the coordinates 

⇒ Correlation[z]//MatrixForm
−

−

 ×
  × 

⇐
16

16

1. 1.66533 10

1.66533 10 1.

The back projection can be computed as 
⇒ pc.Inverse[Eigenvectors[S]]==Xstd

⇐ True
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The principal components can be computed in other ways, too. A very robust 
technique is the Singular Value Decomposition. 

1.1.2  Singular Value Decomposition 

Singular Value Decomposition (SVD; e.g., Grafarend and Awange 2003), is a 
computational method often employed to calculate principal components of a 
dataset. Using SVD to perform PCA is efficient and numerically robust technique. 
Moreover, the intimate relationship between them can guide our intuition about 
what PCA actually does and help us gain additional insights into this technique. 
Using built -in function 

⇒ {u, s, v} = SingularValueDecomposition[Xstd]; 
where 

⇒ u//MatrixForm  
 
 − 
 −

⇐



0.555249 0.598636 0.577350

0.240809 0.780178 0.577350

0.796058 0.181542 0.577350

 

⇒ s//MatrixForm  
 
 
 
 
 

⇐
1.988075 0.

0. 0.218078

0. 0.

 

⇒ v//MatrixForm  
− −

⇐
 
 − 

0.707107 0.707107

0.707107 0.707107

 
Then the principal components, 

⇒ u.s//MatrixForm  
 
 − 
 − 

⇐



1.103878 0.130549

0.478746 0.170139

1.582624 0.039590

 

1.1.3  Karhunen-Loeve Decomposition 

Karhunen–Loeve decomposition is typically used to reduce the dimensionality of 
data and capture the most important variation in the first few components. Now 
the principle components can be computed as 
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⇒
→

KL=KarhunenLoeveDecomposition[ Transpose[Xstd], 

Standardized  True ] [[1]] // Transpose; MatrixForm[KL] 
 
 − 
 − 

⇐



1.103878 0.130549

0.478747 0.170139

1.582624 0.039590

Let us consider the components of the row vectors of X as the (x, y) coordinates 
of a 2D point. Then we can visualize the row vectors of the original and the 
projected X matrix, see Fig. 1.3. 

⇒ Join[z,First[z]]

⇐ {{1.10388,0.130549},{0.478746,-0.170139},

{-1.58262,0.0395904},1.10388,0.130549}

⇒
→ → →

→
→ → →

→

p0=Show[{ListPlot[Join[z,{First[z]}],

PlotRange All,PlotStyle {PointSize Large,Red}, 

AspectRatio 0.65],ListPlot[Join[Xstd,{First[Xstd]}],

PlotRange All, PlotStyle {PointSize Large,Blue},

AspectRatio 0.6 → →5]},PlotRange All,Frame True]

⇐

Fig. 1.3 The row vectors of X matrix as 2D points. The blue points stand for the original and 
the red points for the projected vectors 

1.1.4  PCA and Total Least Square 

You can easily realize that the approximate representation of the projected points 
in the eigenspace is possible via fewer coordinates than in the original space. 
Namely in this example, one can consider only the first coordinate of the red 
points, the x coordinates, since the y coordinates are negligibly small. 

Let us consider the original blue points as data points of a linear regression 
problem. Then the dominant eigenvector of the PCA as a regression line 
minimizes the error orthogonal (perpendicular) to the model line in the original 
space, consequently it provides the Total Least Square (TLS) solution. 

For example if we consider the dominant eigenvector, which is 
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⇒ EigenvectorsX=Transpose[{Transpose[Eigenvectors[S]][[2]],{0,0}}] 
⇐ {{-0.707107,0},{-0.707107,0}}  

and projecting back the object into the original space, we get a line of the TLS 
solution, see Fig. 1.4 

⇒ XstdX=z.PseudoInverse[EigenvectorsX] 
⇐ {{-0.780559,-0.780559},{-0.338525,-0.338525},{1.11908,1.11908}} 

⇒ → →p1=Show[{p0,ListPlot[XstdX,Joined True,PlotStyle Green]}]

 

⇐

 

 
Fig. 1.4 The dominant eigenvector, green line provides the TLS solution for the blue data 

points 
 
To illustrate the situation let us compute the TLS per definition. In order to 
compute the total least square let Δ ix  and Δ iy  stand for the error components of 
the i-th point, then the objective function to be minimized is 

2 2

1

Δ Δ
n

i i
i

x y
=

+∑  

under the constrains 

( )Δ 1,...,i i i iy y x x i nα ∆ β− = − + =  

Since the constrains are linear, eliminating Δ iy , 

( )( )22

1

Δ Δ
n

i i i i
i

x y x xα β
=

+ − − −∑  

Considering the coordinates of the original blue points, 
⇒ {x,y}=Transpose[Xstd]; 

The objective function is, 

⇒ 2 2
i iobj=Apply[Plus,Table[Δx +(y[[i]]-α(x[[i]]-Δx )-β),{i,1,n}]]; 
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Now the unknown variables are not only the parameters (α, β) but the 
adjustments Δ ix , too. 

⇒ ivars=Join[Table[{Δx },{i,1,n}],{α,β}]//Flatten;

Let us employ built-in optimization method,
⇒ AbsoluteTiming[sol=NMinimize[obj,vars];]

⇐ {0.0592062,Null}

Then the solution is 

⇒ sol

α β −

→ −⇐ →

→ − → → ×
1 2

16
3

0.0475579,{Δ 0.0923122,Δ 0.120307,

Δ 0.0279946, 1, 1.4957 1 }0 }

{ x x

x  

Figure 1.5 shows the fitted line y(x) = x 
⇒ →Show[{p1,Plot[x,{x,-1,1.2},PlotStyle {Dashed,Blue}]}]

⇐

Fig. 1.5 The line of the dominant eigenvector, green line and the fitted TLS dashed blue line 

1.1.5  Image Compression 

In case of image data reduction we can do the same. Let us consider the following 
image, see Fig. 1.6. 
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image=⇒

 

 

Fig. 1.6 Density plot of the image to be compressed 
 
The image data 

⇒ M=ImageData[image]; 
⇒ Dimensions[M] 
⇐ {180,180}  

The used storage space is 
⇒ org=ByteCount[M] 
⇐ 259352  

Let us standardize the column vectors 

⇒ Xstd=std[M]; 
The covariance matrix is 

⇒ S=Covariance[Xstd];  
The eigenvalues are 

⇒ ES=Eigenvalues[S];

 
The numbers of them, 

⇒ Dimensions[ES] 
⇐ {180}  

Let us display these (180) eigenvalues, see Fig. 1.7. 
⇒ → →

→ →
ListPlot[Take[ES,{1,20}],Joined True,Frame True,

PlotStyle {Red,Thin},PlotRange All]  
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⇐

 

Fig. 1.7 The eigenvalues 

The eigenvectors 
⇒ EV=Eigenvectors[S];

Let us take the nine eigenvectors from the 180, which means 0.05%

n=9;⇒
EVC=Transpose[Take[EV,{1,n}]];⇒

Dimensions[EVC]⇒
{180,9}⇐

The image reduction means to project the standardized image matrix into the 
eigenspace, 

⇒ MM=Xstd.EVC;

Let us project it back into the original space, see Fig. 1.8

⇒ Mv=MM.PseudoInverse[EVC];
⇒ imageR=Image[Mv]//ImageAdjust

⇐

 

Fig. 1.8 The compressed image, the compression is 95% 

We store the image data in the eigenspace 
comp95=ByteCount[MM]⇒

⇐ 13432
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Consequently the reduction is 
1-comp95/org//N⇒  

⇐ 0.948209  
Alternatively, considering the ratio of the employed eigenvectors,

 

⇒ 1-9/180. 
⇐ 0.95  

A less compressed image (75%) can be seen in Fig. 1.9 

n=45;⇒

 
Since 
1-45./180 ⇒  
0.75⇐  

Then 
⇒ EVC=Transpose[Take[EV,{1,n}]]; 

Image reduction in the eigenspace 

⇒ MM=Xstd.EVC; 
Let us project it back into the original space 

⇒ Mv=MM.PseudoInverse[EVC]; 
⇒ imageR45=Image[Mv]//ImageAdjust

 

⇐

 

 
Fig. 1.9 The compressed image, the compression is 75% 

Remark 

We can get better quality if we transform back the image matrix from the 
standardized form. 
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In case of RGB images one should map all of the three color-channel matrices. 
However, employing Mathematica built in function, we could solve this problem 
easily, since this function can reduce the vectors of a list. For example, if we have 
a list of n elements of vectors of m dimensions, then there are nm n m= ×  
elements. One can partition these nm elements as × =r q nm , and then reduce 
every vector of length of q to a vector of length of qR < q. The number of the 
reduced elements is therefore = × < × =nmR r qR r q nm . 

Let us consider the following image 

img=⇒

 
Fig. 1.10 Colored image to be compressed 

The image data structure is obtained by 
⇒ data=ImageData[img];data//Dimensions

⇐ {168,250,3}

The number of the elements (nm), 

⇒ vector=Flatten[data];

⇒ Dimensions[vector]

⇐ {126000}

Let q = 30, 
⇒ dvector=Partition[vector,30];

Now, we should like to reduce the original image (Fig. 1.10) to an image which 
is ten times smaller, 126000 12600= → =nm nmR . Let us employ the built-in 
function DimensionReduce with PrincipalComponentsAnalysis method, 

⇒
→

autoencoder=DimensionReduction[dvector,3,

Method "PrincipalComponentsAnalysis"] 
⇐ DimensionReducerFunction[  

Every vector of length 30 will be reduced to a vector of length 3 (encoding), 

⇒ reduced=autoencoder[dvector];

⇒ Dimensions[reduced]

12 1  Dimension Reduction

1.1.6  Color Image Compression 



 

⇐ {4200,3}  
The reconstruction (decoding) 

⇒ reconstructed = autoencoder[reduced, "OriginalVectors"];  
⇒ Dimensions[reconstructed] 
⇐ {4200,30}  

Organizing the elements in a color image data structure 
⇒ diti=Partition[Partition[Flatten[reconstructed],3],250];  
⇒ diti//Dimensions  
⇐ {168,250,3} 

Then the reconstructed image requiring 10% of the original storage space, can 
be seen in Fig. 1.11. 

⇒ img090=Image[diti] 

⇐

 

 
Fig. 1.11 The reconstructed color image from data, after 90% compression 

1.1.7  Image Compression in Python 

Let us solve the same problem with Python code. 
To use Python in Mathematica, we start a Python session, 

⇒
→

→ →

session=

StartExternalSession[<|"System" "Python",

"Version" "3.5.4","Executable"

"C:\Users\Ben\AppData\Local\Programs\Python\Python35\

python.exe"|>]//Quiet

 

⇐ ExternalSessionObject[  
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# import packages needed for thi section
from sklearn.decomposition import PCA
from sklearn.preprocessing import normalize
import scipy.io as sio
import matplotlib.image as image
import pandas as pd
import matplotlib.pyplot as plt

 

Load image data 

 

# Image is stored in MATLAB dataset
X = sio.loadmat('M:\\ex7faces.mat')
X = pd.DataFrame(X['X'])
# Normalize data by subtracting mean and scaling
X_norm = normalize(X)

 

Run PCA 

 

# Set pca to find principal components that explain 99%
# of the variation in the data
pca = PCA(.99)
# Run PCA on normalized image data
lower_dimension_data = pca.fit_transform(X_norm)
# Lower dimension data from 5000x1024 to 5000x353 
lower_dimension_data.shape

 

⇐ {5000,353} 
Reconstruct images 

 

# Project lower dimension data onto original features
approximation = pca.inverse_transform(lower_dimension_data)
# Approximation is 5000x1024
approximation.shape
# Reshape approximation and X_norm to 5000x32x32 to display
# images
approximation = approximation.reshape(-1,32,32)
X_norm = X_norm.reshape(-1,32,32)

 

Display images 
The following code displays the original images next to their 99% of variation 

counterparts (Fig. 1.12). Because of how matplotlib displays images, the pictures 
may be rotated. If you really want to fix this, you can transpose each row of 
X_norm and approximation using a for loop. 
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for i in range(0,X_norm.shape[0]):
 X_norm[i,] = X_norm[i,].T
 approximation[i,] = approximation[i,].T
fig4, axarr = plt.subplots(3,2,figsize=(8,8))
axarr[0,0].imshow(X_norm[0,],cmap='gray')
axarr[0,0].set_title('Original Image')
axarr[0,0].axis('off')
axarr[0,1].imshow(approximation[0,],cmap='gray')
axarr[0,1].set_title('99% Variation')
axarr[0,1].axis('off')
axarr[1,0].imshow(X_norm[1,],cmap='gray')
axarr[1,0].set_title('Original Image')
axarr[1,0].axis('off')
axarr[1,1].imshow(approximation[1,],cmap='gray')
axarr[1,1].set_title('99% Variation')
axarr[1,1].axis('off')
axarr[2,0].imshow(X_norm[2,],cmap='gray')
axarr[2,0].set_title('Original Image')
axarr[2,0].axis('off')
axarr[2,1].imshow(approximation[2,],cmap='gray')
axarr[2,1].set_title('99% variation')
axarr[2,1].axis('off')
plt.show()

Fig. 1.12 The results of the Python code 

1.2  Independent Component Analysis 

Basic Theory 

Independent Component Analysis (ICA) was originally developed to deal with 
problems that are closely related to the cocktail-party problem. Since the recent 
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increase of interest in ICA, it has become clear that this principle has a lot of other 
interesting applications as well. Another, very different application of ICA is on 
feature extraction. A fundamental problem in digital signal processing is to find 
suitable representations for image, audio or other kind of data for tasks like 
compression and denoising. Data representations are often based on (discrete) 
linear transformations, see (Hyvärinen and Oja 2000). 

1.2.1  Independent Component Analysis 

Let us consider the Independent Component Analysis (ICA) technically as a 
nonnegative matrix factorization method, which factorizes a nonnegative M 
matrix of dimension n×m as S×A matrices with dimensions n×k and k×m, 
respectively, so that 

Norm minSΜ Α(  −  × ) → 

for a fixed max( , )k n m≤ . Here k is the number of the independent component 
vectors. Higher k value provides better fitting. 

For factorization one may use the so called FastICA algorithm see, (Hyvärinen 
and Oja, 1997). Let us see an example. 

⇒ RandomSeed[1234];
⇒ R=RandomReal[{0,1},{6,5}];MatrixForm[R]

⇐

0.841172 0.830508 0.418279 0.874579 0.659077

0.340847 0.806480 0.502507 0.587620 0.961298

0.279034 0.189383 0.328972 0.946375 0.194114

0.488847 0.023039 0.349878 0.013693 0.156696

0.771758 0.114210 0.617770 0.959671 0.12122

 
 
 
 
 
 
 
 
 
 

0

0.715040 0.040767 0.081169 0.546480 0.264697

Let us employ the FastICA algorithm as implemented Mathematica package 
written by Antonov (2016). 

⇒ Import["https://raw.githubusercontent.com/antononcube/

MathematicaForPrediction/

master/IndependentComponentAnalysis.m"]

Let k = 4 

⇒ k=4;
⇒

→
{S,A}=IndependentComponentAnalysis[Transpose[R],k,

PrecisionGoal 12];
 

Then 
⇒ Norm[R-Transpose[S.A]]/Norm[R]

⇐ 0.64741
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where 
⇒ Transpose[S.A]//MatrixForm

⇐

 0.496913  0.486248  0.074020  0.530320  0.314818

-0.095124  0.370509  0.066536  0.151649  0.525327

 0.331211  0.241559  0.381149  0.998552  0.246291

 0.082743 -0.383065 -0.056227 -0.392412 -0.249409

 0.

 
 
 
 
 
 
 
 
 
 

452686 -0.204862  0.298698  0.640599 -0.197851

 1.004190  0.329912  0.370315  0.835626  0.553843

Let us increase the k value. 

⇒ k=5;
⇒

→
{S,A}=IndependentComponentAnalysis[Transpose[R],k,

PrecisionGoal 12];
 

⇒ Norm[R-Transpose[S.A]]/Norm[R]

⇐ 0.585572

So we have better fitting. Increasing k further 

⇒ k=6;
⇒

→
{S,A}=IndependentComponentAnalysis[Transpose[R],k,

PrecisionGoal 12];
 

⇒ Norm[R-Transpose[S.A]]/Norm[R]
−×⇐ 151.03105 10

We get quite perfect reconstruction of matrix R. 

1.2.2  Image Compression via ICA 

Now let us consider the following image (Fig. 1.13), 

⇒ imgR=

Fig. 1.13 Original gray image (Range Image) of 128×128 
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Mathematica 
The image matrix is, 

⇒ R=ImageData[imgR];

⇒ Dimensions[R]
⇐ {128,128}

First we consider k = 20, then 
⇒

→
{S,A}=IndependentComponentAnalysis[Transpose[R],20,

PrecisionGoal 15];

The error of the fitting, 
⇒ Norm[R-Transpose[S.A]]/Norm[R]

⇐ 0.204661

where 

⇒ Dimensions[S]
⇐ {128,20}

⇒ Dimensions[A]
⇐ {20,128}

The reconstructed image is (Fig. 1.14) 
⇒ imdata=Transpose[S.A];

⇒ Image[imdata]

⇐

 

Fig. 1.14 The reconstructed image with k = 20 

Let us increase k = 50 
⇒

→
{S,A}=IndependentComponentAnalysis[Transpose[R],50,

PrecisionGoal 15];

Now the error decreased 
⇒ Norm[R-Transpose[S.A]]/Norm[R]

⇐ 0.117028
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Then 

⇒ Dimensions[S]
⇐ {128,50}

⇒ Dimensions[A]
⇐ {50,128}

The image is (Fig. 1.15), 
⇒ imdata=Transpose[S.A];

⇒ imgC=Image[imdata]

⇐

 

Fig. 1.15 The reconstructed image with k = 50 

The quality of the reconstructed image can be improved via convolution (Fig. 
1.16), 

⇒ GaussianFilter[imgC,1.]//ImageAdjust

⇐

Fig. 1.16 The reconstructed image with k = 50 after improvement via convolution 

Now let us employ Python. Our image is the well known (Fig. 1.17) 
⇒ lena=Import["G:\\lena.png"]
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⇐

Fig. 1.17 The original image 

⇒ Dimensions[ImageData[lena]]

⇐ {512,512,4}

Python 
⇒ Off[Syntax::stresc]

⇒ →
→ →

session=StartExternalSession[<|"System" "Python",

"Version" "3.5.4","Executable" "C:\Users\B la\AppData\

Local\Programs\Python\Python35\python.exe"|>]//Quiet

e  

⇐ ExternalSessionObject[  

The code developed by Treadway (2018), 

  

# load packages
from sklearn.decomposition import FastICA
from pylab import *
from skimage import data, io, color

 

Let us employ k = 20 and k = 50, 

ica = FastICA(n_components = 50) 

  
emc2_image = io.imread("G:\\lena.png", as_grey = True)
ica.fit(emc2_image)

⇐ ExternalObject

  
emc2_image_ica = ica.fit_transform(emc2_image)
emc2_restored = ica.inverse_transform(emc2_image_ica) 

  
io.imshow(emc2_restored)
show()
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⇐ $Aborted

The results can be seen below (Figs. 1.18 and 1.19). 

Fig. 1.18 The compressed image, k = 20 

Fig. 1.19 The compressed image, k = 50 

1.3  Discrete Fourier Transform 

Basic Theory 

The field of digital signal processing relies heavily on operations in the frequency 
domain (i.e. on the Fourier transform). For example, several lossy image and 
sound compression methods employ the discrete Fourier transform: the signal is 
cut into short segments, each is transformed, and then the Fourier coefficients of 
high frequencies, which are assumed to be unnoticeable, are discarded. The 
decompressor computes the inverse transform based on this reduced number of 
Fourier coefficients. 
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In general Discrete Fourier Transformation (DFT) maps a list of real numbers 
into another list of complex numbers. In our case - image compression - we have 
real intensity values equally spaced. Anyway the result will be complex. 

1.3.1  Data Compression via DFT 

First let us consider the basic idea of the compression in 1D. We have a list of real 
numbers 

⇒ u={1,1,2,2,1,1,0,0};  
Now, let us carry out its Fourier transform 

⇒ v=Fourier[{1,1,2,2,1,1,0,0}] 
⇐ {2.82843 +0. I,-0.5+1.20711 I,0. +0. I,0.5 -0.207107 I,

0. +0. I,0.5 +0.207107 I,0. +0. I,-0.5-1.20711 I}  

The absolute values and the arguments of the complex elements, 

⇒ vAbs=Abs[v] 
⇐ {2.82843,1.30656,0.,0.541196,0.,0.541196,0.,1.30656}  
⇒ vArg=Arg[v] 
⇐ {0.,1.9635,0.,-0.392699,0.,0.392699,0.,-1.9635} 

The transformation is invertable 
⇒ InverseFourier[vAbs Exp[I vArg]] 

−− ×⇐ 161.,1.,2.,2.,1.,1.,0., 1.57009 10  
Replacing elements that are close to zero by 0 digit. 

⇒ Chop[%] 
⇐ {1.,1.,2.,2.,1.,1.,0,0} 

For data compression, let us eliminate elements (replace by zero) representing 
higher frequencies, elements with small absolute values. In this case the 
compressed list contains only three nonzero elements instead of six, 

⇒ vvAbs=Map[If[#<0.6,0,#]&,vAbs] 
⇐ {2.82843,1.30656,0,0,0,0,0,1.30656} 

Transforming this list back leads to 
⇒ uu=InverseFourier[vvAbs Exp[I vArg]]//Chop  
⇐ {0.646447,1.35355,1.85355,1.85355,1.35355,0.646447,

0.146447,0.146447}  

Fig. 1.20 shows the visualization of the two lists 
⇒ → →ListPlot[{u,uu},Joined True,Frame True] 
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⇐

 

Fig. 1.20 The graph of the original list (blue) and the compressed list (brown) 

In case of 2D the technique is very similar. Let us consider a very simple binary 
matrix 

Face=⇒

which is the dataset of the following image (Fig. 1.21)
Image[Face]⇒

⇐

 

Fig. 1.21 The image of the binary matrix 

Let us carry out its DFT and visualize the absolute value of the Fourier 
coefficients, see Fig. 1.22 

FaceFu=Fourier[Face];⇒

AbsFaceFu=Abs[FaceFu];⇒
ListPlot3D[AbsFaceFu,PlotRange {0,4}]⇒ →
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⇐

 

 
Fig. 1.22 The absolute values of the DFT coefficients 

Let us see the histogram of these values, see Fig. 1.23 

data=Flatten[AbsFaceFu];⇒  
Histogram[data]⇒  

⇐

 

 
Fig. 1.23 The histogram of the absolute values of the DTF coefficients 

 
We can see that there are a lot of small and a few big elements. Let us kick out 
the big ones, for example those are bigger than 0.5, see Fig. 1.24 

M=AbsFaceFu;⇒  
Do[If[AbsFaceFu[[i,j]]>0.5,M[[i,j]]=AbsFaceFu[[i,j]],

M[[i,j]]=0],{i,1,20},{j,20}]

⇒
 

ListPlot3D[M,PlotRange {0,2}]⇒ →  
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⇐

  

Fig. 1.24 The absolute values of the remained nonzero DTF coefficients 
 

 
The number of the zero elements 
n0=Select[Flatten[M],#==0&]//Length⇒  
359⇐  

This means that roughly 90% of the total numbers of the 400 coefficients are 
considered 

⇒ ×n0/(20 20) 
⇐ 0.8975  

Employing inverse transform, the compressed image can be seen in Fig. 1.25 
Chop[InverseFourier[M Exp[I Arg[FaceFu]]]] // Image⇒  

⇐

 

 
Fig. 1.25 The image after 90 % compression 

 

1.3.2  DFT Image Compression 

Now we can employ this technique for compressing a digital image, see Fig. 1.26 
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img=⇒

 

 
Fig. 1.26 Image to be compressed 

 
The matrix of the image data 
M=ImageData[img];⇒  
M//Dimensions⇒  
{148,223,3}⇐  

We consider only the first color channel, see Fig. 1.27 
MM=Table[First[M[[i,j]]],{i,1,148},{j,1,223}];⇒  
Dimensions[MM]⇒  
{148,223}⇐

 
Then the image is, 
imgK=Image[MM];imgK//BrightnessEqualize⇒  

⇒

 

 
Fig. 1.27 Employing a single color channel of the image data 

 
Let us carry out DFT on the image data 

dft=Fourier[MM];⇒  
The absolute values and the arguments of the coefficients and the arguments 
abs=Abs[dft];⇒  
arg=Arg[dft];⇐  

Figure 1.28 shows the absolute values of the DFT coefficients 
ListPlot3D[abs,PlotRange {0,1.5}]⇒ →  
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⇒   
Fig. 1.28 The absolute values of the DFT coefficients 

 
Let us consider the histogram, see Fig. 1.29 

data=Flatten[Abs];⇒  
Histogram[data]⇒  

⇐   
Fig. 1.29 The histogram of the absolute values of the DTF coefficients 

 
We eliminate − replace them with zero − the coefficients smaller than 0.2, see 

Fig. 1.30. 

M=abs;⇒  
Do[If[abs[[i,j]]>0.2,M[[i,j]]=abs[[i,j]],M[[i,j]]=0],

{i,1,148},{j,1,223}]

⇒
 

ListPlot3D[M,PlotRange {0,1.5}]⇒ →  
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⇐   
Fig. 1.30 The absolute values of the DFT coefficients bigger than 0.2 

 
Now can compute the number of zeros in the image data matrix 

data=Flatten[M];⇒  
n0=Select[data,#==0&]//Length⇒  
31165⇐  

This means roughly 95 % compression, since 

1.-n0/(148 223)⇒  
0.0557205⇐  

The compressed image is (Fig. 1.31), 
Chop[InverseFourier[M Exp[I arg]]] // Image//BrightnessEqualize⇒  

⇐   
Fig. 1.31 The reconstructed image after ~ 95 % compression 

1.4  Discrete Wavelet Transform 

Basic Theory 

The Discrete Wavelet Transform (DWT) projects the information of an image into 
orthonormal subspaces constructed by wavelet bases. The coefficients of these 
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basis functions are representing the local details. The very small coefficients can 
be set to zero without significantly changing the other part of the image. The 
greater the number of zeros the greater the compression ratio. 

1.4.1  Concept of Discrete Wavelet Transform 

Let us consider a discrete signal computed from the function 
2f[x_]:=Sin[20 x] Log[x]⇒  

The list of the discrete values is 
u=N[Table[f[i],{i,1/32,1,1/32}]]⇒  
{7.02779,7.29508,5.346,2.58784,0.057173,-1.60163,-2.17964,

-1.84287,-0.98427,-0.044889,0.636128,0.90238,0.781799,0.426935,

0.0285651,-0.261377,-0.372927,-0.320387,-0.173266,-0.0146507,

0.0940374,0.13000

⇐

3,0.10599,0.0538185,0.00504998,-0.0222418,

-0.0265446,-0.017396,-0.00642286,-0.000413988,0.0005056,0.}

 

Let us visualize it, see Fig. 1.32 
p0=ListPlot[u,PlotStyle {Red,Thin},Joined True,

Frame True,PlotRange All]

⇒ → →
→ →  

⇐   
Fig. 1.32 Discrete value signal 

 
This can be considered as a vector in a V5 space of dimension of 25 = 32. Using 

DWT this vector can be projected into a space V4, which is an orthogonal subspace 
of V5. This is done using orthonormal wavelet basis.  

There are many different types of orthonormal wavelets, for example classic 
Haar wavelet, the Daubechies wavelets and Battle-Lemarié wavelets based on B-
spline, see Figs. 1.33–1.35, 

⇒ →Plot[WaveletPsi[HaarWavelet[],x],{x,-1,2},Exclusions None] 
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⇐   
Fig. 1.33 Classic Haar wavelet 

 
⇒ →Plot[WaveletPsi[DaubechiesWavelet[4],x],{x,-3,4},PlotRange All] 

⇐   
Fig. 1.34 Daubechies wavelet of order 4 

 
⇒

→
Plot[WaveletPhi[BattleLemarieWavelet[3,10],x],{x,-10,10}, 

PlotRange All]  

⇐   
Fig. 1.35 Battle-Lemarié wavelets based on B-spline of order 3 evaluated on equally spaced 

interval {-10, 10} 
 

Here we employ one of the most simple ones, the Haar wavelet families. Let 
n is the level of the decomposition (refinement), 

n = 1;⇒
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The DWT of the signal u employing Haar wavelet basis, 
dwd = DiscreteWaveletTransform[u,HaarWavelet[],n]⇒

 
⇐ DiscreteWaveletData

 
This orthogonal decomposition can be visualized by via the wavelet tree, see 

Fig. 1.36 

dwd["TreeView"]⇒  

⇐   
Fig. 1.36 Wavelet tree of refinement level, n = 1 

 
The projected vector in V4 space of dimension of 24 = 16 
p1=Normal[dwd];⇒

 

p1[[1]]⇒  
{0} {10.1278,5.61007,-1.09209,-2.84435,-0.727726,1.08789,

0.854704,-0.164623,-0.490247,-0.132877,0.158421,0.113001,

-0.0121564,-0.0310707,-0.00483438,0.000357513}

⇐ →
 

and its residual 
p1[[2]]⇒

 

{1}->{-0.189,1.95032,1.17295,-0.238134,-0.664243,-0.188269,

0.250927,0.20502,-0.0371513,-0.112158,-0.0254319,0.0368906,

0.0192982,-0.00646902,-0.00424891,0.000357513}

⇐
 

see Fig. 1.37 which shows the projected signal and its residual in 4
⊥V , which is 

the orthonormal space of V4 
GraphicsGrid[

{{ListPlot[p1[[1]][[2]]/1.5,PlotStyle {Red},Joined True,

Frame True,PlotRange {-3,11},AspectRatio 1.5],

ListPlot[p1[[2]][[2]]/1.5,PlotStyle {Blue,Thin},

Joined True,Frame True,PlotRange {-3

⇒
→ →

→ → →
→

→ → → ,11},

AspectRatio 1.5]}}]→
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⇐   
Fig. 1.37 An image box, showing the projections of the signal onto 4V  and 4

⊥V  

 
We can see that the residual in 4

⊥V  is quite big. Therefore we need deeper 
decomposition (higher level refinement). 

n = 2;⇒  
dwd = DiscreteWaveletTransform[u,HaarWavelet[],n]⇒

 
⇐ DiscreteWaveletData

 
This orthogonal decomposition can be visualize by via the wavelet tree (Fig. 1.38), 

dwd["TreeView"]⇒  

⇐   
Fig. 1.38 Wavelet tree of refinement level, n = 2 

 
The projected vector will further be project onto V3 orthogonal subspace, 

whose space is orthogonal to V4 space, 
p2=Normal[dwd];⇒

 

p2[[1]]⇒  
and its residual is 
p2[[2]]⇒  
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{1} {-0.189,1.95032,1.17295,-0.238134,-0.664243,-0.188269,

0.250927,0.20502,-0.0371513,-0.112158,-0.0254319,0.0368906,

0.0192982,-0.00646902,-0.00424891,0.000357513}

⇐ →
 

Then the projected vector will be further project into V3 orthogonal subspace, 
which space is orthogonal to V4 space, 
p2[[3]]⇒  
{{0,0} {11.1284,-2.78349,0.254674,0.487961,

-0.440615,0.191924,-0.0305662,-0.00316562}

⇐ →  

and its residual 
p2[[4]]⇒  
{0,1} {3.19452,1.23903,-1.28383,0.720772,

-0.252698,0.0321164,0.0133744,-0.00367122}

⇐ →  

see Fig. 1.39 
GraphicsGrid[

{{ListPlot[p2[[3]][[2]]/1.5,PlotStyle {Red},Joined True,

Frame True,PlotRange {-3,12},AspectRatio 1.5],

ListPlot[p2[[4]][[2]]/1.5,PlotStyle {Green,Thin},

Joined True,Frame True,PlotRange {-

⇒
→ →

→ → →
→

→ → → 3,12},

AspectRatio 1.5],ListPlot[p1[[2]][[2]]/1.5,

PlotStyle {Blue,Thin},Joined True,Frame True,

PlotRange {-3,12},AspectRatio 1.5]}}]

→
→ → →
→ →

 

⇐   
Fig. 1.39 An image box, containing the projections onto 3V , 3

⊥V  and 4
⊥V  

1.4.2   2D Discrete Wavelet Transform 

We can proceed similarly in case of a 2D discrete signal represented by a matrix. 
Let us suppose that the signal J is represented by an array of 32×32 elements. The 
first step to transform (to project) the 32 rows, as 1D signal. The result will be two 
arrays of 32×16 elements, (Jh and Jg), where the rows of Jh are the signals projected 
into the space of V4 , while the rows of Jg are the residuals in 4

⊥V  (Fig. 1.40). 
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Fig. 1.40 The first step of creating an image box in 2D 

 
In the following step we can carry out the projections for the columns of the 

matrices Jh and Jg, see Fig. 1.41 
 

 
Fig. 1.41 The next step is the projections of the columns 

 
Let us illustrate this process with an image, see Fig. 1.42 
 

A=⇒   ; 

Fig. 1.42 A tennis player, Martina Hingis 
 
We define a projection function as 

⇒ H[s_]:=Module[{sV,dV},sV=Map[Apply[Plus,#]&,Partition[s,2]]/2;

dV=Map[Apply[Subtract,#]&,Partition[s,2]]/2;Join[sV,dV]]  

Let us employ this function for the image, but before that, we resize it as a 
gray image of size 128×128 (Fig. 1.43). 
AA=ImageResize[A,{128,128}];⇒  
hingis=ColorConvert[AA,"GrayScale"][⇒
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⇐   
Fig. 1.43 The resized and “grayed” image 

 
Checking the dimensions and assigning the image data 
ImageData[hingis]//Dimensions⇒  
{128,128}⇐  
Hingis=ImageData[hingis];⇒  

Now we can carry out the first step, projecting rows 
ImageBox1=Partition[Flatten[Map[H,Hingis]],128];⇒  
ImageBox11=Table[If[j>64,If[j==65,63,(63-ImageBox1[[i,j]])/1.5],

ImageBox1[[i,j]]],{i,1,128},{j,1,128}];

⇐  

The result can be seen in Fig. 1.44 
ListDensityPlot[ImageBox1//Reverse,Mesh False,

ColorFunction GrayLevel]

⇒ →
→  

⇐   
Fig. 1.44 The image after projection of the rows 

 
Then let us project the columns 
ImageBox2=

Transpose[Partition[Flatten[Map[H,Transpose[ImageBox1]]],128]];

⇒
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ImageBox21=Table[If[i>64||j>64,If[j==65||i==65,63,

(63-ImageBox2[[i,j]])/1.5],ImageBox2[[i,j]]],{i,1,128},

{j,1,128}];

⇒

 

The result is in Fig. 1.45 
p2=ListDensityPlot[

ImageBox2//Reverse,Mesh False,ColorFunction GrayLevel]

⇒
→ →  

⇐   
Fig. 1.45 The result of the 2D DWT 

 
The image size in Fig. 1.45 is 64×64, which means the compressed form of the 

original image of size 128×128. 

1.4.3  DWT Image Compression 

Now let us employ this technique for a color image of size 288×492, see in Fig. 
1.46. 

img=⇒   

Fig. 1.46 A view of Budapest 
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Now we can use DaubechiesWavelet family of order four, ensuring better 
quality, since contrary to Haar Wavelet, this family satisfies some smoothness 
conditions. Let us employ n = 2 refinement, 
dwd=DiscreteWaveletTransform[img,DaubechiesWavelet[4],2];⇒  

The image boxes can be seen in Fig. 1.47 
z=WaveletImagePlot[dwd]⇒  

⇐   
Fig. 1.47 The image boxes of the DWT 

 
Let us display the compressed image, see Fig. 1.48 
hu=ImageData[z];hu//Dimensions⇒  
{288,492,3}⇐  
Take[hu,{5,72},{5,120}]//Image//ImageAdjust⇒  

⇐   
Fig. 1.48 The compressed image 

 
The compression ratio 

41 1. / 2⇒ −  
0.9375⇐  

which means roughly 94%. 
In order to get more fancy images of the residual images, we may introduce 

the following function, 
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imgFunc[img_,{___,1|2|3}]:=

Composition[Sharpen[#,0.5]&,ImageAdjust[#,{0,1}]&,ImageAdjust,

ImageApply[Abs,#1]&][img]

imgFunc[img_,wind_]:=Composition[ImageAdjust,

ImageApply[Abs,#1]&][img]

⇒

 

Then we get the nice image boxes, see in Fig. 1.49 
z=WaveletImagePlot[dwd,Automatic,imgFunc[#1,#2]&,

BaseStyle Red,ImageSize 500]

⇒
→ →  

⇐   
Fig. 1.49 The colorized image boxes 

 

1.5  Radial Basis Function 

Basic Theory 

The Radial Basis Method (RBF) is one of the kernel methods, which can be 
employed for approximation of data or functions given by values especially when 
we do not have regular grid but scattered data in many dimensions. The RBF 
method employs the linear combination of the so called radial basis functions to 
carry out basically local approximation. This method is also applied in machine 
learning, namely as activation function of artificial neural networks (ANN). 

The wide spread successful application of RBF is based on the theoretical fact 
that the radial basis functions, like algebraic polynomials and sigmoid activation 
functions of ANN, are so called universal approximators. 
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Let φ(x) be a nonconstant, bounded, and monotonically increasing continuous 
function. Let Im be denoted by an m-dimensional unit hypercube where ∈ mx I  
Considering the space of the continues functions on this hypercube C(Im), then for 
any (x) ( ) mg C I  and 0> , there exist an integer n with real constants bi and wi, 
such that 

( ) ( )
1

ϕ
=

= +∑
n

T
i i i

i

G x c w x b

where G(x) is independent of g(x) and 

( ) -  ( )  < G x g x 

for all  mx I . In other words, functions of the form G(x) are dense in C(Im). 
The RBF method employs the linear combination of φ(x) basis functions, 

( ) ( )
1

ϕ
=

= −∑
n

i i
i

f x c x x

The coefficients ci can be computed from the known data pairs ( ) =i if x f  via 
solution of the following linear system, 

Let us consider a 1D problem. The function is, 

( )  sin( )=f x x x

We generate n = 10 points [ ]1/ 2, 3∈ix , i = 1, 2, ...,n (Fig. 1.50) 

data=Table[{i 0.3,i 0.3 Sin[i 0.3]},{i,1,10}]⇒
{{0.3,0.0886561},{0.6,0.338785},{0.9,0.704994},{1.2,1.11845},

{1.5,1.49624},{1.8,1.75293},{2.1,1.81274},{2.4,1.62111},

{2.7,1.15393},{3.,0.42336}}

⇐

p1=ListPlot[data,Filling Axis]⇒ →
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1.5.1  RBF Approximation 



 

⇐   
Fig. 1.50 The generated discrete points 

 
To approximate the function we employ a Thin- Plate Spline (TPS), which is 

a type of the radial basis function family, where the basis function, 
2( ) log( )βϕ =r r r  

where    -= P Pir x x . 
Figure 1.51 shows two basic functions with xi = 1.5 and xi = 1.8 locations in 

case β = 1, 
2TPSpline = Function[x,xi,If[x xi,Abs[x-xi] Log[Abs[x-xi]],0]]⇒ ≠  

2Function[x,xi,If[x xi,Abs[x-xi] Log[Abs[x-xi]],0]]⇐ ≠  
Plot[{TPSpline[x,1.5],TPSpline[x,1.8]},{x,0.3,3},

PlotRange {-0.5,0.5}]

⇒
→  

⇐   
Fig. 1.51 Two TPS basis functions with β = 1 

 
Separating the coordinates data into two arrays, 
np=Length[data];datax=Transpose[data][[1]];

datay=Transpose[data][[2]];

⇒
 

the matrix of the linear system is 
M=Table[First[TPSpline[datax[[i]],datax[[j]]]],

{i,1,np},{j,1,np}];

⇒
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This matrix has a relative high condition number 

Norm[Inverse[M]]Norm[M]⇒  
308.843⇐  

Therefore to compute the coefficents, we use pseudoinverse, 
c=PseudoInverse[M].datay⇒  
{1.94971,-2.26345,-0.412961,-0.419176,-0.282941,

-0.22277,-0.224389,-0.178729,-1.23521,1.00129}

⇐  

The coefficients can be seen in Fig. 1.52 
ListPlot[c,Filling Axis]⇒ →  

⇐   
Fig. 1.52 The ci coefficients 

 
The approximation function can be computed as an expression, 
f=First[c.Map[TPSpline[x,#]&,datax]]⇒  

21.94971If[x 0.3,Abs[x-0.3] Log[Abs[x-0.3]],0]⇐ ≠  

or in function form, which provides a very good approximation, see Fig. 1.53 
g[x_]:=First[c.Map[TPSpline[x,#]&,datax]]⇒  

For example 
g[1.75]⇒  
1.72293⇐  
Show[{Plot[x Sin[x],{x,0.5,3},PlotStyle Red],

Plot[g[x],{x,0.5,3},PlotRange {0,3}],p1}]

→
→

⇒
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⇐   
Fig. 1.53 RBF approximation. 

1.5.2  RBF Image Compression 

The image compression methods try to reduce the necessary data of an image 
without loosing the basic information for the proper image reconstruction. Let us 
consider the following image, Fig. 1.54 

img=⇒   

Fig. 1.54 A young squirrel 
 
The image size 
M=ImageData[img];M//Dimensions⇒  
{180, ]180}⇐  

Figure 1.55 shows the intensity values of the gray image 
SListPlot[Flatten[M],PlotStyle PointSize[Tiny],Frame True]→ →⇒  
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⇐   
Fig. 1.55 The intensity value of the image pixels 

 
The size of the image is 180×180, i.e., 32 400 pixels. In order to create 

compressed image, some non-white pixels will be randomly whited. Pixel value 1 
will be assigned to these pixels. Let us initialize a matrix MR as 

MR=M;⇒

 

⇒ SeedRandom[4567]

 
 

   Then randomly whitening let us say 60 000 pixels, 
Do[MR[[RandomInteger[

{1,180}],RandomInteger[{1,180}]]]=1.,{i,1,60000 ]}];

⇒  

Figure 1.56 shows the image after randomly carrying out 6×104 times the 
whitening process, 
Image[MR]⇒  

⇐   
Fig. 1.56 The image after whitening 
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Now, the coordinates of the remained black pixels will be normalized, see Fig. 
1.57 
dataz={};dataxy={};⇒  
Do[If[MR[[i,j]]!=1.,AppendTo[dataxy,{i /180.,j/180.}];

AppendTo[dataz,MR[[i,j]]]],{i,1,180},{j,1,180}]

⇒
 

ListPlot[dataxy,Frame True,AspectRatio 1,

PlotStyle PointSize[Tiny]]

⇒ → →
→  

⇐   
Fig. 1.57 The black pixels with normalized coordinates 

 
These pixels will be the basic points and their intensity represents the function 

value to be approximated. Their number is 
nj=Length[dataxy]⇒  

⇒ 5091  

which is only the 
Length[dataxy]/(32400) 100.⇒  

⇒ 15.713  

percent of the total number of pixels (32 400). This can be considered as roughly 
85 % compression. Now, we are going to reconstruct the original image from these 
pixels. Let us employ the TPS approximation 

2( ) log( )βϕ =r r r  

with β = 2, 

4

TPSpline2=

Function[x,xi,If[x xi,Norm[x-xi,2] Log[Norm[x-xi,2]],0]]≠

⇒
 

4Function[x,xi,If[x xi,Norm[x-xi,2] Log[Norm[x-xi,2]],0]]≠⇐  

We can employ parallel computation for computing the elements of the 
coefficient matrix, 
DistributeDefinitions[TPSpline2]⇒  
{TPSpline2}⇐  
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M=ParallelTable[TPSpline2[dataxy[[i]],dataxy[[j]]],

{i,1,nj},{j,1,nj}];

⇒
 

Using pseudoinverse 

PM=PseudoInverse[M];⇒  
Then we compute the coefficients, see Fig. 1.58. 

c=PM.dataz;⇒  
ListPlot[c,Filling Axis]⇒ →  

⇐   
Fig. 1.58 The coefficients of the TPS function 

 
Let us define the reconstruction (approximation) function as 
g[x_,y_]:=c.Map[TPSpline2[{x,y},#]&,dataxy]⇒  

Now generating 104 pixel values in parallel computation, we get the 
reconstructed image, see Fig. 1.59 
DistributeDefinitions[g]⇒  
{g,c,TPSpline,datax}⇐  
RImage=ParallelTable[g[x,y],{x,0,1,0.01},{y,0,1,0.01}];⇒  
Image[RImage]⇒  

⇐   
Fig. 1.59 The reconstructed image, which means roughly 85 % compression 
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It goes without saying that the reconstructed image is less attractive than the 
original one, but do not forget that in case of the original image, one needs to store 
32 400 intensity values plus their (x, y) coordinates, while for the reconstructed 
image, only the 5091 coefficients are stored, i.e., roughly 85% compression. 

1.6  AutoEncoding 

Basic Theory 

Autoencoders are similar to other dimensionality reduction techniques like 
principal component analysis. They create a space where the essential parts of the 
data are preserved, while non-essential (or noisy) parts are removed. There are two 
parts of an autoencoder: 
a) Encoder: This is the part of the network that compresses the input into a fewer 

number of bits. The space represented by these fewer number of bits is called 
the "latent-space" and the point of maximum compression is called the 
bottleneck. These compressed bits that represent the original input are together 
called an "encoding" of the input. 

b) Decoder: This is the part of the network that reconstructs the input image using 
the encoded information. 

Let's look at an example to understand the concept better. 
 
 

1.6.1  Concept of AutoEncoding 

Let us suppose we have the following 2D dataset (xi,yi) 
x=Range[-1,1,0.1 ];

y=Map[2#+RandomReal[{-0.2,0.2}]&,x];

⇒
 

or 
vectors=Transpose[{x,y}];⇒  

See the visualization of these points in Fig. 1.60, 

p0=ListPlot[vectors,PlotStyle Red,PlotMarkers ,

AspectRatio 1.5,AxesLabel {"x","y"}]

*→ →
→ →

⇒
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⇐   
Fig. 1.60 2D dataset 

 
Now we should like to reduce the 2D set into a 1D one using linear mapping 

represented by the parameters W1 and b1 as (xi,yi)→zi 

1 1= +
 
 
 

i
i

i

x
z W b

y
 

we call it encoding. The inverse mapping is, similarly 

we call it decoding. 
The optimal parameters can be computed via minimizing the total error, 

namely 

In our case 
2

2

G=Total[MapThread[((w21(w1 1+w2 2+b1)+b21- 1)+

(w22(w1 1+w2 2+b

# # #

# # #1)+b22- 2)) ;&,x,y]]

⇒
 

Minimizing the error 
sol=NMinimize[G,{w1,w2,w21,w22,b1,b2,b21,b22}]⇒  
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{0.0367586,

{w1 -0.378812,w2 -0.755743,w21 -0.530069,w22 -1.05751,

b1 0.160262,b2 0.0952464,b21 0.0900884,b22 0.166903}}

⇐
→ → → →

→ → → →

 

The parameters are 
{W1, W2, W21, W22, B1, B2, B21, B22}=

{w1,w2,w21,w22,b1,b2,b21,b22}/.sol[[2]];

⇒
 

Then mapping into 1D 
encoding=Map[W1 #[[1]]+W2 #[[2]]+B1&,vectors];⇒  

and for inverse mapping 
decoding=Map[{W21 #+B21,W22 #+B22}&,encoding];⇒  

Let us visualize the results, see Fig. 1.61 
⇒ →

→ →•
p1 = ListPlot[decoding, PlotStyle Blue, 

PlotMarkers , AspectRatio 1.5];  
Show[{p0,p1}]⇒  

⇐   
Fig. 1.61 Inverse mapping (blue) 

 
There are two effects using this technique: we can reduce dimension of the 

input object (encoding) and also can eliminate noise from the output (decoding). 
Let us fit a line to the original data, see Fig. 1.62. 
b=Fit[vectors,{1,a},a]⇒  
-0.0128264+1.98551 a⇐

 
   Visualizing it, see Fig. 1.62 

Show[{p0,p1,Plot[b,{a,-1,1},PlotStyle {Thin,Red}]}]⇒ →  
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⇐   
Fig. 1.62 The decoded data points are on the least squares line fitted to the original red points 

 
The concept can be extended to nonlinear multidimensional mapping using 

neural networks with activation functions, see Fig. 1.63. 
 

 

Fig. 1.63 The principle of the AutoEncoder 
 
The network represents the identity function between the input and output layers, 

( )'→i i
x x , while the hidden layer represents the reduced dimensional feature of 
the input, see Fig. 1.64 
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Fig. 1.64 The Encoder part of the AutoEncoder 



 

1.6.2  Simple Example 

Let us solve the problem discussed in the previous via built in functions of 
Mathematica 

vectors⇒  
{{-1.,-1.92412},{-0.9,-1.77127},{-0.8,-1.72194},{-0.7,-1.34765},

{-0.6,-1.10272},{-0.5,-0.8349},{-0.4,-0.930942},

{-0.3,-0.516347},{-0.2,-0.333443},{-0.1,-0.159662},

{0.,-0.0867159},{0.1,0.159127},{0.2,

⇐

0.327988},{0.3,0.40351},

{0.4,0.829282},{0.5,0.896315},{0.6,1.00913},{0.7,1.48511},

{0.8,1.71077},{0.9,1.85131},{1.,2.19269}}

 

Employing built-in function, 
autoencoder=DimensionReduction[vectors,1,Method "AutoEncoder"]⇒ →  
DimensionReducerFunction[⇐  

 
Using it for encoding 

reduced=autoencoder[vectors]⇒  
{{2.11631},{1.91152},{1.76693},{1.43337},{1.17505},{0.903404},

{0.843341},{0.486353},{0.261511},{-0.00218918},{-0.291566},

{-0.560727},{-0.781182},{-0.940042},{-1.3241},{-1.4775},

{-1.66034},{-2.07668},

⇐

{-2.33208},{-2.53274},{-2.86254}}

 

and decoding 
reconstructed = autoencoder[reduced, "OriginalVectors"]⇒  
{{-0.986715,-1.95732},{-0.896418,-1.77797},

{-0.832666,-1.65133},{-0.692416,-1.35956},

{-0.583796,-1.13359},{-0.469578,-0.895981},

{-0.444323,-0.843443},{-0.294219,-0.531176},

{-0.200175,-0.332512},{-0.0

⇐

995873,-0.160038},

{0.0156269,-0.115671},{0.120819,0.12227},

{0.206976,0.317154},{0.26906,0.457587},

{0.419156,0.797099},{0.479107,0.932707},

{0.550563,1.09434},{0.713275,1.46239},

{0.813087,1.68816},{0.891509,1.86555},{1.0204,2.15709}}

 

The visualized original and reconstructed datasets can be seen on Fig. 1.65. 
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⇒ →
→ →•

p1 = ListPlot[reconstructed, PlotStyle Blue,

PlotMarkers , AspectRatio 1.5];  
Show[{p0,p1}]⇒  

⇐   
Fig. 1.65 The original data (red stars) and the reconstructed data (blue disks) 

1.6.3  Compression of Image 

Let us consider an image of a baboon (Fig. 1.66) 

img=⇒   

Fig. 1.66 The baboon image to be compressed 
 

Let us employ the procedure introduced in Sect. 1.1.5. The image data 
structure 
data=ImageData[img];data//Dimensions⇒  
{160,160,3}⇐  

The first element vector (pixel vector), 
data[[1,1]]⇒  
{0.392157,0.337255,0.152941}⇐  
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Let q = 3, 
vector=Flatten[data,1];⇒  

then 

Dimensions[vector]⇒  
{25600,3}⇐  

and 

vector[[1]]⇒  
{0.392157,0.337255,0.152941}⇐  

Let us employ the built-in function DimensionReduce with AutoEncoder 
method, to reduce the vectors of length 3 to vector of length 2, (encoding) 
autoencoder=DimensionReduction[vector,2,Method "AutoEncoder"]⇒ →  
DimensionReducerFunction[⇐  

 
The list of the reduced vectors 

reduced=autoencoder[vector];⇒  
Dimensions[reduced]⇒  
{25600,2}⇐  

The reconstruction (decoding) 
reconstructed = autoencoder[reduced, "OriginalVectors"];⇒  
Dimensions[reconstructed]⇒  
{25600,3}⇐  

Restructuring the image matrix 
diti=Partition[reconstructed,160];⇒  
diti//Dimensions⇒  
{160,160,3}⇐  

For example, the first pixel vector of the original image 
data[[1,1]] = {0.392157,0.337255,0.152941} can be compared with that of the 
reconstructed image, 
diti[[1,1]]⇒  
{0.399873,0.330421,0.1686}⇐  

The visualization of the reconstructed image from the (1−2/3) = 1/3 = 33 % 
compressed data (Fig. 1.67). 
img2=Image[diti]⇒  

  52 1  Dimension Reduction



 

⇐   
Fig. 1.67 The image reconstructed from 33% compressed data 

 
Let us repeat the process using 1−1/3 = 2/3 = 66% compression (Fig. 1.68), 
autoencoder=DimensionReduction[vector,1,Method "AutoEncoder"]⇒ →  
DimensionReducerFunction[⇐  

 
reduced=autoencoder[vector];⇒  
Dimensions[reduced]⇒  
{25600,1}⇐  
reconstructed = autoencoder[reduced, "OriginalVectors"];⇒  
diti=Partition[reconstructed,160];⇒  
img1=Image[diti]⇒  

⇐   
Fig. 1.68 The image reconstructed from 66% compressed data 

 
Finally let us employ 90 % compression (Fig. 1.69), follow the strategy 

introduced in Sect. 1.1.5 

vector=Flatten[data];⇒  
Dimensions[vector]⇒  
{76800}⇐  
dvector=Partition[vector,30];⇒  
autoencoder=DimensionReduction[dvector,3,Method "AutoEncoder"]⇒ →  
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DimensionReducerFunction[⇐  

 
reduced=autoencoder[dvector];⇒  
Dimensions[reduced]⇒  
{2560,3}⇐  
reconstructed = autoencoder[reduced, "OriginalVectors"];⇒  
Dimensions[reconstructed]⇒  
2560,30}⇐  
diti=Partition[Partition[Flatten[reconstructed],3],160];⇒  
diti//Dimensions⇒  
{160,160,3}⇐  
diti[[1,1]]⇒  
{0.347188,0.304335,0.110974}⇐  
img090=Image[diti]⇒  

⇐   
Fig. 1.69 The image reconstructed from 90% compressed data 

 
Figure 1.70 shows the original image and the images reconstructed from 

differently compressed data, 
GraphicsGrid[{{img,img2,img1,img090}}]⇒  

⇐   
Fig. 1.70 The original image and the images reconstructed from 33%, 66% and 90% 

compressed data 
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1.7  Fractal Compression 

Basic Theory 

Employing a collection of geometric transformations one may reconstruct an 
image knowing the parameters of these transformations. The compression ratio of 
the process can be measured by the ratio of the number of these parameters to the 
number of the pixel information of the image. 

This procedure is based on two theoretical concepts: 
a) Theory of the contractive transformation, 
b) Contractive mapping fixed point theorem 

The contractive mappings always bring points closer together (by some factor 
less than 1) and the contractive mapping theorem says something that is intuitively 
obvious: if a transformation is contractive then when applied repeatedly starting 
with any initial point, we converge to a unique fixed point. 

1.7.1  Concept of Fractal Compression 

The algorithm consists of two steps. The first step is the encoding. The image to 
be compressed (Range Image) should be downsampled into a smaller one 
(Domain Image), see Fig. 1.71. 

 

Fig. 1.71 The original Range Image and the downsampled Domain Image 
 
Let us refer to the elements (usually 4×4 blocks) of these two images as Rk,l and 
Di,j. We are looking for the best transformation mapping for every single elements 
of the Range Image from the collection of the elements of the Domain Image, 
which provides 

( )− →k,,l i, j D
R a D +t min  
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under the conditions 0 1α≤ ≤  and 255 255− ≤ ≤t  (grayscale images). 
It means we should find the optimal parameters of (α, t) for all Rk,l from the 

collection of ∈i, jD D . This is a very hard computational task. The result is a 
Fractal Code Book (FCB) containing the optimal (α, t)k,l pairs. 

The next step is the reconstruction of the Range Image, decoding, using the 
Fractal Code Book. Since the mappings in the FCB are contractive and their fixed 
points are the blocks of the Range Image, the following mapping series results into 
the approximation of the Range Image: 

1) Start a Range Image which pixel are randomly generated, R0, 
2) Employing down sampling to create a corresponding Domain Image, D0 
3) Apply the mappings of the FCB to D0, creating a new Range Image, R1 
4) Repeat steps 2) and 3) creating a series R0 , R1 , R2 ,..., Rn →R 

Usually n = 7 - 8 iteration is satisfactory. 
 
 
 

1.7.2  Illustrative Example 

Let us see an example to illustrate how Mathematica can achieve this algorithm. 
Since the encoding is computationally a very demanding task, we we use a simple 
snippet image. 

Our image is, see Fig. 1.72 

imgR=⇒   

Fig. 1.72 The original binary Range Image of 24×24 pixels 
 

Mathematica 
This will be the Range Image. We sample it down to an image of 12×12. This will 
be the Domain Image, see Fig. 1.73 
imgD=ImageResize[imgR,{12,12}]//Round⇒  
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⇐   
Fig. 1.73 The Domain Image of 12×12 pixels 

 
Now we consider 2×2 blocks and divided the two images 12×12= 144 and 6×6= 
36 blocks, respectively (Figs. 1.74 and 1.75). 
imgRP=ImagePartition[imgR, 2];⇒  
Grid[imgRP, Spacings  {0.8, 0.1}]⇒ →  

⇐   
Fig. 1.74 The 2×2 image blocks of the Range Image 

 
imgDP=ImagePartition[imgD, 2];⇒  
Grid[imgDP, Spacings  {0.8, 0.1}]⇒ →  

⇐   
Fig. 1.75 The 2×2 image blocks of the Domain Image 

 
We put these blocks in two lists, RP and DP 
RP=Flatten[Table[ImageData[imgRP[[i,j]]],{i,1,12},{j,1,12}],1];⇒  
Length[RP]⇒

 

144⇐  
DP=Flatten[Table[ImageData[imgDP[[i,j]]],{i,1,6},{j,1,6}],1];⇒  
Length[DP]⇒

 

36⇐  

Here are functions for computing Range Block (RP) and the Domain Block 
(DB),  
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RangeBlocks[imgR_]:=Module[{imgRP,RP},

imgRP=ImagePartition[imgR, 2];

RP=Flatten[Table[ImageData[imgRP[[i,j]]],{i,1,12},

{j,1,12}],1]];

⇒

 

RangeBlocks[imgR][[105]]//MatrixForm⇒

 

1. 1.

1. 0.
⇐

 
 
 

 

DomainBlocks[imgR_]:=Module[{imgD,imgDP,DP},

imgD=ImageResize[imgR,{12,12}]//Round;

imgDP=ImagePartition[imgD, 2];

DP=Flatten[Table[ImageData[imgDP[[i,j]]],{i,1,6},

{j,1,6}],1]];

⇒

 

DomainBlocks[imgR][[10]]//MatrixForm⇒

 

0. 0.

0. 1.
⇐

 
 
 

 

The next module is a function for computing the best DB for a given RB. The 
input is a given block of the Range Image (Ri), and the output is a block from the 
Domain Image blocks, which can be fitted in the best way to the given input block. 
We should find the best (optimal parameters α and t using constrained 
minimization. Although the problem is linear, here local nonlinear method is 
employed, since it requires the less programming effort, however at same time the 
more computation power, too. 
BestDomain[Ri_,DP_]:=Module[{sD,sG,j,minD,s1,smin,sindex,best},

sD={};

Do[sG=Norm[\[Alpha] DP[[j]]+t IdentityMatrix[2]-Ri];

minD=FindMinimum[{sG,0. 1.,-255. t 255.},

{{ ,0.5},{t,0.}},MaxIterations 15]/

α
α

⇒

≤ ≤ ≤ ≤
→ /Quiet;

AppendTo[sD,minD],{j,1,36}];

s1=Map[First[#]&,sD];

smin=Min[s1];

sindex=Position[s1,n_ /; n==smin]//Flatten;

best=sD[[First[sindex]]];

{First[sindex],{ ,t}/.best[[2]]}]α

 

For example 
AbsoluteTiming[BestDomain[RP[[35]],DP]]⇒  
{0.72433,{3,{0.5,0.}}}⇐  

This computation took 0.7 sec, the result 3 is the number of the optimal block 
from the Domain Image, and 0.5 and 0 are the optimal parameters that ensure the 
best fitting to the block 35 form the Range Image blocks. 

Computing the Fractal Code Book means to find the optimal mate block from 
the Domain Image blocks for every blocks of the Range Image. 

Let us employ parallel computing. 
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⇒ FractalCodeBook[RP_, DP_, n1_, n2_] := 

ParallelMap[BestDomain[#, DP] &, RP[[n1 ;; n2]]] 
⇒ DistributedDefinitions[BestDomain, RP0,DP0] 

This process took less than 30 sec for the 144 Range Image blocks. 
s=AbsoluteTiming[FractalCodeBook[RP0,DP0,1,144]]⇒  

⇐ {28.4507,{{1,{0.996886,0.00313009}},{1,{0.996886,0.00313009}},

{1,{0.996886,0.00313009}},{27,{0.999875,0.0000625009}},

{3,{0.5,0.}},{3,{0.5,0.}},{3,{0.5,0.}},{3,{0.5,0.}},

{27,{0.999875,0.0000625009}},{1,{0.996886,0.00313009}},

{1,{0.996886,0.00313009}},{1,{0.996886,0.00313009}},

.....

{21,{0.999875,0.0000625009}},{1,{0.996886,0.00313009}},

{1,{0.996886,0.00313009}},{1,{0.996886,0.00313009}}}}

 

Having the mates, we have the FCB for the Range Image 

S=Map[Flatten[#]&,s[[2]]];⇒  

Now we can reconstruct the Range Image using these collections of the 
optimal parameter pairs. Let us start with an image of randomly generated pixels, 
see Fig. 1.76 

⇒ SeedRandom[1234]

 

imgRN=Image[Table[RandomReal[],{i,1,24},{j,1,24}]]⇒  
 

⇐   
Fig. 1.76 The starting Range Image of 24×24 pixels 

 
The next module can realizes the iterated function system, 
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FractalDecoding[img0_,FCB_,m_]:=Module[

{S,u,imgR,imgDP0,DP0,RP1,ImageRP1,k,i1,j1,j},

S={img0};

Do[u=Last[S];

imgR=ImageResize[u,{12,12}]//Round;

imgDP0=ImagePartition[imgR, 2];

DP0=Flatten[Table[ImageData

⇒

[imgDP0[[i1,j1]]],{i1,1,6},

{j1,1,6}],1];

RP1={};

Do[AppendTo[RP1,FCB[[j,2]] DP0[[FCB[[j,1]]]]+FCB[[j,3]]

IdentityMatrix[2]],{j,1,144}];

ImageRP1=ImageAssemble[Partition[Map[Image[#]&,RP1],12]];

AppendTo[S,ImageRP1],{k,1,m}];

S]

 

Let us employ it, 

z=FractalDecoding[imgRN,S,5];⇒  

The results, the elements of the iteration series, can be seen in Fig. 1.77 
g=GraphicsGrid[Partition[z,3]]⇒

 
 

⇐   
Fig. 1.77 The series of images after 5 iteration steps 

 
The last image can be improve a bit via binarizing pixels that do not have not 

binary values, see Fig. 1.78 
gc=Closing[z//Last,DiskMatrix[0.9]]//Round⇒  
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⇐   
Fig. 1.78 The reconstruction result 

1.7.3  Image Compression with Python 

Now let us employ this algorithm in Python. This code is considerably faster than 
the Mathematica code, consequently normal size of images can be handled 

 

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from scipy import ndimage
from scipy import optimize
import numpy as np
import math

 

Manipulate channels of the color image, Fig. 1.79), 

 
def get_greyscale_image(img):
 return np.mean(img[:,:,:2], 2) 

 
def extract_rgb(img):
 return img[:,:,0], img[:,:,1], img[:,:,2] 

 

def assemble_rbg(img_r, img_g, img_b):
 shape = (img_r.shape[0], img_r.shape[1], 1)
 return np.concatenate((np.reshape(img_r, shape), 

np.reshape(img_g, shape),
np.reshape(img_b, shape)), axis=2)

 

Transformations 

 

def reduce(img, factor):
 result = np.zeros((img.shape[0] // factor,
 img.shape[1] // factor))
 for i in range(result.shape[0]):
  for j in range(result.shape[1]):
   result[i,j] = np.mean(img[i*factor:(i+1)*factor,

*factor:(j+1)*factor])
 return result

 

 
def rotate(img, angle):
 return ndimage.rotate(img, angle, reshape=False) 

 
def flip(img, direction):
 return img[::direction,:] 
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def apply_transformation(img, direction, angle, contrast=1.0,
  brightness=0.0):
 return contrast*rotate(flip(img,direction),angle)+brightness

 

Contrast and brightness 

 

def find_contrast_and_brightness1(D, S):
 # Fix the contrast and only fit the brightness
 contrast = 0.75
 brightness = (np.sum(D - contrast*S)) / D.size
 return contrast, brightness 

 

 

def find_contrast_and_brightness2(D, S):
 # Fit the contrast and the brightness
 A = np.concatenate((np.ones((S.size, 1)), np.reshape(S, 
 (S.size, 1))), axis=1)
 b = np.reshape(D, (D.size,))
 x, _, _, _ = np.linalg.lstsq(A, b)
 #x = optimize.lsq_linear(A, b, [(-np.inf, -2.0),
 (np.inf, 2.0)]).x
 return x[1], x[0]

 

Compression for greyscale images 

 

def generate_all_transformed_blocks(img, source_size,
  destination_size,step):
 factor = source_size // destination_size
 transformed_blocks = []
  for k in range((img.shape[0]-source_size)//step+1):
   for l in range((img.shape[1]-source_size)//step+1):
    # Extract the source block and reduce it to the
    sape of a destination block
    S = reduce(img[k*step:k*step+source_size,

l*step:l*step+source_size], factor)
    # Generate all possible transformed blocks
     for direction, angle in candidates:
      transformed_blocks.append((k,l,direction,angle,
 apply_transformation(S, direction, angle)))
 return transformed_blocks
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def compress(img, source_size, destination_size, step):
 transformations = []
 transformed_blocks = generate_all_transformed_blocks(img,
 source_size, destination_size, step)

 for i in range(img.shape[0] // destination_size):
  transformations.append([])
  for j in range(img.shape[1] // destination_size):
   print(i, j)
   transformations[i].append(None)
   min_d = float('inf')
   # Extract the destination block
   D = img[i*destination_size:(i+1)*destination_size,

j*destination_size:(j+1)*destination_size]
   # Test all possible transformations and take the best one
    for k,l,direction,angle,S in transformed_blocks:
     contrast,brightness = find_contrast_and_brightness2(D,S)
     S = contrast*S + brightness
     d = np.sum(np.square(D - S))
     if d < min_d:
       min_d = d
       transformations[i][j]=(k,l,direction,angle,contrast,

brightness)
 return transformations

 

 

def decompress(transformations, source_size, destination_size,
  step, nb_iter=8):
 factor = source_size // destination_size
 height = len(transformations) * destination_size
 width = len(transformations[0]) * destination_size
 iterations = [np.random.randint(0, 256, (height, width))]
 cur_img = np.zeros((height, width))
 for i_iter in range(nb_iter):
  print(i_iter)
  for i in range(len(transformations)):
   for j in range(len(transformations[i])):
    # Apply transform
    k,l,flip,angle,contrast,brightness = transformations[i][j]
    S = reduce(iterations[-1][k*step:k*step+source_size,
     l*step:l*step+source_size], factor)
    D = apply_transformation(S,flip,angle,contrast,brightness)
    cur_img[i*destination_size:(i+1)*destination_size,
     j*destination_size:(j+1)*destination_size] = D
   iterations.append(cur_img)
   cur_img = np.zeros((height, width))
 return iterations

 

Compression for color images 

 

def reduce_rgb(img, factor):
 img_r, img_g, img_b = extract_rgb(img)
 img_r = reduce(img_r, factor)
 img_g = reduce(img_g, factor)
 img_b = reduce(img_b, factor)
 return assemble_rbg(img_r, img_g, img_b)

 

 

def compress_rgb(img, source_size, destination_size, step):
 img_r, img_g, img_b = extract_rgb(img)
 return [compress(img_r,source_size,destination_size,step), \
  compress(img_g, source_size, destination_size, step), \
  compress(img_b, source_size, destination_size, step)]
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def decompress_rgb(transformations, source_size,
  destination_size, step, nb_iter=8):
 img_r = decompress(transformations[0], source_size,
  destination_size, step, nb_iter)[-1]
 img_g = decompress(transformations[1], source_size,
  destination_size, step, nb_iter)[-1]
 img_b = decompress(transformations[2], source_size,
  destination_size, step, nb_iter)[-1]
 return assemble_rbg(img_r, img_g, img_b)

 

Plot the result 

 

def plot_iterations(iterations, target=None):
 # Configure plot
 plt.figure()
 nb_row = math.ceil(np.sqrt(len(iterations)))
 nb_cols = nb_row
 # Plot
 for i, img in enumerate(iterations):
  plt.subplot(nb_row, nb_cols, i+1)
  plt.imshow(img, cmap='gray', vmin=0, vmax=255,
   interpolation='none')
  if target is None:
   plt.title(str(i))
  else:
   # Display the RMSE
   plt.title(str(i) + ' (' + '{0:.2f}'.format
    (np.sqrt(np.mean(np.square(target - img)))) + ')')
  frame = plt.gca()
  frame.axes.get_xaxis().set_visible(False)
  frame.axes.get_yaxis().set_visible(False)
 plt.tight_layout()

 

Parameters 

 
directions = [1, -1]
angles = [0, 90, 180, 270]
candidates = list(zip(directions, angles))

 

Test for grayscale image 
Import["M:\\me.jpg"]⇒  

⇐   
Fig. 1.79 The image to be compressed 

ImageData[%]//Dimensions⇒  
{256,256,3}⇐  
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Range Image Blocks: 8×8, Domain Image Blocks: 4×4 and number of 
iterations: 8 

 

def test_greyscale():
 img = mpimg.imread('M:\\me.jpg')
 img = get_greyscale_image(img)
 img = reduce(img, 4)
 plt.figure()
 plt.imshow(img, cmap='gray', interpolation='none')
 transformations = compress(img, 8, 4, 8)
 iterations = decompress(transformations, 8, 4, 8)
 plot_iterations(iterations, img)
 plt.show()

 

 
test_greyscale()

 

   The result can be seen in Fig. 1.80. 

 

 

Fig. 1.80 The reconstructed grayscale images 
 
Test for RGB image (see Fig. 1.81) 

 

def test_rgb():
 img = mpimg.imread('M:\\me.jpg')
 img = reduce_rgb(img, 4)
 transformations = compress_rgb(img, 8, 4, 8)
 retrieved_img = decompress_rgb(transformations, 8, 4, 8)
 plt.figure()
 plt.subplot(121)
 plt.imshow(np.array(img).astype(np.uint8),
  interpolation='none')
 plt.subplot(122)
 plt.imshow(retrieved_img.astype(np.uint8),
  interpolation='none')
 plt.show()
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test_rgb() 

cimg=⇒   

Fig. 1.81 The original and the reconstructed rgb image 
 
This result somewhat may be improved using lowpass filter (see Fig. 1.82) 
LowpassFilter[cimg,0.99]⇒  

⇐   
Fig. 1.82 Employing lowpass filter 

 

1.7.4  Accelerating Fractal Code Book Computation 

We may improve the computation of the Fractal Code Book if we use only a few 
representant elements in the Domain Blocks instead of all of the original ones. A 
possible solution is the clustering of the original Domain Blocks, and considering 
only the center elements of the clusters. It goes without saying that the quality will 
not be the same as it would be with the original Domain Blocks. A trade off is 
necessary between the computation time and the decoding quality. In this case 
even the decoding algorithm should be somewhat modified, too. 

Another possibility is to employ unsupervised clustering via neural network, 
and using the codebook vectors as elements in the new Domain Blocks. 
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All in all the computation can be speed up sometimes with two magnitudes 
when these techniques are applied. 

As an illustrative example a gray image of 128×128 was compressed (Fig. 
1.83). 

img=⇒  

Fig. 1.83 Original gray image (Range Image) of 128×128 

R=ImageData[imgR];⇒  
Dimensions[R]⇒  
{128,128}⇐  

The size of the image blocks is 4×4 and therefore the number of the Range 
Blocks is 32×32 =1024, see Fig. 1.84. 
imgRP=ImagePartition[imgR,4];⇒  
Grid[imgRP, Spacings  {0.8, 0.1}]⇒ →  

⇐   
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RP=Flatten[Table[ImageData[imgRP[[i,j]]],{i,1,32},{j,1,32}],1];⇒  
Length[RP]⇒  
1024⇐  

The domain image size was 64×64, see Fig. 1.85, and the number of the blocks 
in the Domain Blocks was 16×16 = 256, see Fig. 1.86. 
imgD=ImageResize[imgR,{64,64}]⇒  

⇐   
Fig. 1.85 The Domain Image size of 64×64 

imgDP=ImagePartition[imgD,4];⇒  
Grid[imgDP, Spacings  {0.8, 0.1}]⇒ →  

⇐   
Fig. 1.86 The original Domain Blocks 

DP=Flatten[Table[ImageData[imgDP[[i,j]]],{i,1,16},{j,1,16}],1];⇒  
Length[DP]⇒  
256⇐  

In order to reduce the number of the domain blocks from 256 to 5, clustering 
was employed, and the centers of the clusters were considered as the elements of 
the modified Domain Blocks. It means that the originally 1024×256 = 262 144 
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computation cycles in the coding process, could be reduced to 1024×5 = 5120 
cycles. 

⇒ →clusters=FindClusters[DP,5,PerformanceGoal "Quality"]; 
Length[clusters]⇒  
5⇐  

The image matrices of the five elements of the reduced Domain Blocks, 
centers=Map[Mean[#]&,clusters];⇒  
Map[TableForm[#]&,centers]⇒  
{ 0.422460 0.412478   0.413119   0.413155

0.431943 0.412299   0.404777   0.429162

0.423922 0.418004   0.418966   0.439929

0.445954 0.451266   0.462888   0.473939 ,

⇐

 0.148366 0.155065   0.138235   0.251144

0.143954 0.136928   0.131046   0.236765

0.133660 0.127124   0.142157   0.226797

0.160294 0.140686   0.132353   0.210784 ,

 

0.681618 0.692927   0.706583   0.716352

0.687535 0.713725   0.720483   0.727556

0.692787 0.713796   0.718943   0.720483

0.706583 0.723284   0.719083   0.713235 ,

 

0.774292 0.736383   0.682353   0.606536

0.748148 0.667102   0.593028   0.525054

0.492810 0.382135   0.373856   0.335512

0.367756 0.280610   0.302397   0.281917 ,

 

0.074510 0.058823   0.027451   0.427451

0.776471 0.384314   0.019608   0.392157

0.984314 0.988235   0.764706   0.674510

0.952941 0.964706   0.980392   0.980392 }

 

Now, the modules are also should be modified a bit, namely 
RangeBlockes[imgR_]:=Module[{imgRP,RP},

imgRP=ImagePartition[imgR, 4];

RP=Flatten[Table[ImageData[imgRP[[i,j]]],{i,1,32},{j,1,32}],1]];

⇒

 

DomainBlockes[imgR_]:=Module[{imgD,imgDP,DP},

       imgD=ImageResize[imgR,{64,64}];

imgDP=ImagePartition[imgD, 4];

DP=Flatten[Table[ImageData[imgDP[[i,j]]],{i,1,16},{j,1,16}],1]];

⇒
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BestDomain[Ri_,DP_]:=Module[{sD,sG,j,minD,s1,smin,sindex,best},

sD={};

Do[sG=Norm[  DP[[j]]+t IdentityMatrix[4]-Ri];

minD=FindMinimum[{sG,0. 1.,-255. t 255.},

{{ ,0.5},{t,0.}},MaxIterations 15]//Quiet;

α
α

α

⇒

≤ ≤ ≤ ≤
→

AppendTo[sD,minD],{j,1,5}];

s1=Map[First[#]&,sD];

smin=Min[s1];

sindex=Position[s1,n_ /; n==smin]//Flatten;

best=sD[[First[sindex]]];

{First[sindex],{ ,t}/.best[[2]]}]α

 

Even in this way the computation of the Fractal Code Book took a long time, 
which could have been reduced via parallel computing, 

RP0=RP;DP0=centers;⇒  
⇒ FractalCodeBook[RP_, DP_, n1_, n2_] := 

ParallelMap[BestDomain[#, DP] &, RP[[n1 ;; n2]]] 
⇒ DistributeDefinitions[BestDomain,RP0,DP0] 
⇒ AbsoluteTiming[s=FractalCodeBook[RP0,DP0,1,1024];] 
⇐ {1332.06,Null} 

Having the mates, the optimal pairs, the Fractal CodeBook for the Range Image, 
S=Map[Flatten[#]&,s];⇒  

Now we can reconstruct the Range Image using these collections of the 
optimal parameter pairs. Let us start with an image of randomly generated pixels. 

⇒ SeedRandom[1234]; 
⇒ imgRN=Image[Table[RandomReal[],{i,1,128},{j,1,128}]]; 

However, the decoding module must be modified, too. Theoretically we 
should carry out a clustering in every step of the decoding cycle to find the actual 
centers of the clusters for the actually iterated image. To avoid this, we used the 
momentarily small blocks (4×4) nearest to the fixed centers for transformation. It 
goes without saying, that this action reduces the quality of the encoded image 
further. To compensate this negative effect we employed a global, nonlinear filter 
in every iteration step. 
FractalDecoding[img0_,FCB_,m_]:=

Module[{S,u,imgR,imgDP0,DP0,RP1,ImageRP1,k,i1,j1,j,z},

S={img0};

Do[u=Last[S];

imgR=ImageResize[u,{64,64}];

imgDP0=ImagePartition[imgR,4];

DP0=Flatten[Table[ImageData[imgDP

⇒

0[[i1,j1]]],

{i1,1,16},{j1,1,16}],1];
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RP1={};

Do[AppendTo[RP1,

FCB[[j,2]]Flatten[Nearest[DP0,centers[[FCB[[j,

1]]]]],1]+FCB[[j,3]]IdentityMatrix[4]],{j,1,1024}];

z=ImageAssemble[Partition[Map[Image[#]&,RP1],32]];

ImageRP1=NonlocalMeansFilter[z,1.5,0.07,4];

AppendTo[S,ImageRP1],{k,1,m}];

S]

Let us employ the new decoding module, the result can be seen in Fig. 1.87 
z=FractalDecoding[imgRN,S,6];⇒
g=GraphicsGrid[Partition[z,3]]⇒

⇐

Fig. 1.87 The iterated encoded images of size 128×128 

The quality is far from the perfect, but the computation effort could be reduced 
from quarter of million cycles down to five thousands. In addition the image can 
be sharpened a bit, which provides somewhat better quality, 

To compare the original and the decoded image, see Fig. 1.88. 

⇐

Fig. 1.88 The original and the reconstructed image 
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1.8  Comparison of Dimension Reduction Methods 

1.8.1  Measure of Image Quality 

Comparing restoration results requires a measure of image quality. Two 
commonly used measures are Mean-Squared Error and Peak Signal-to-Noise 
Ratio. The mean-squared error (MSE) between two images g(x,y) and f(x,y) is: 

( ) ( )( )2

1 1

1 , ,
N M

MSE
n m

e f x y g x y
MN = =

= −∑∑ .

One problem with mean-squared error is that it depends strongly on the image 
intensity scaling. Peak Signal-to-Noise Ratio (PSNR) avoids this problem by 
scaling the MSE according to the image range: 

10 2PSNR = 10log MSEe
S

− .

where S is the maximum pixel value. PSNR is measured in decibels (dB). The 
PSNR measure is also not ideal, but is in common use. Its main failing is that the 
signal strength is estimated as S2, rather than the actual signal strength for the 
image. PSNR is a good measure for comparing restoration results for the same 
image, but between-image comparisons of PSNR are meaningless. One image 
with 20 dB PSNR may look much better than another image with 30 dB PSNR. 

Figure 1.89 illustrates the PSNR of different image quality, 

Fig. 1.89 Illustration of PSNR 

MSE and PSNR were calculated after quantization (i.e. after converting 
floating-point pixel values to integer), but before clipping of the intensity range. 

In case of RGB images, we consider the norm of the RGB intensity vector of 
the pixels. 
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1.8.2  Comparing Different Images 

As it was mentioned PSNR is good for comparing restoration result, but 
meaningless comparing different images. The achieve this we employ a built-in 
function of Mathematica, which computes distance between two images (Fig. 
1.90). 

There is possible to use different distance measures, here we employ 
normalized entropy of the difference image using 256-bin histogram. 

This measure was basically developed for gray-scale images. One intuitive 
approach is to consider the image as a bag of pixels and compute 

( )2= logk k
k

H p p−∑ . 

where k∈K is the number of gray levels and pk is the probability associated with 
gray level k. 

⇒ im1= ; im2= ; 

Fig. 1.90 Comparing two images 

⇒
→

ImageDistance[

im1,im2,DistanceFunction "DifferenceNormalizedEntropy"] 
⇐ 0.966133  

1.8.3  Compression of Mandala 

We shall compare the two methods, namely the Principal Component Analysis, 
PCA and the Discrete Wavelet Transform compression methods, DWT. The 
quality of the image will be considered at different compression ratios, since the 
computation time is negligible. 

The image considered is a mandala, see Fig. 1.91. 

⇒ img= ; 
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Fig. 1.91 Mandala 



PCA method 
The size of the image 

⇒ data=ImageData[img];data//Dimensions

⇐ {338,338,3}

The number of the elements, 

⇒ vector=Flatten[data];Dimensions[vector]

⇐ {342732}

Let us partition 
⇒ dvector=Partition[vector,338];

The 338 vector of length of size 338 will be reduced to 338 vector of length
of size 85, which corresponds ~75% compression since 1 − 85/338 ~0.75. Let us 
employ the built-in function, 

⇒
→ →

decoder=DimensionReduction[dvector,85,

Method "PrincipalComponentsAnalysis",TargetDevice "GPU"]; 

The application of the decoder function, 

⇒ reduced=decoder[dvector];

we get the reduced data set,

⇒ Dimensions[reduced]
⇐ {1014,85}

The reconstruction (decoding) can be done as 
⇒ reconstructed = decoder[reduced, "OriginalVectors"];

The size of the reconstructed data set,

⇒ Dimensions[reconstructed]
⇐ {1014,338}

Organizing the elements in a color image data structure 
⇒ datarec=Partition[Partition[Flatten[reconstructed],3],338];

⇒ datarec//Dimensions
⇐ {338,338,3}

Then the reconstructed image, see Fig. 1.92. 
⇒ img75=Image[datarec]
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⇐   
Fig. 1.92 Reconstructed Mandala, compression ~75% 

Let us compute the PSNR value. The function for computing PSNR, see Sect. 
1.7.2, 

⇒ PSNR[data100_,datacomp_,n_,m_]:=Module[{d1,d2,eMSE,S,i,j},

d1=Flatten[Table[Norm[data100[[i,j]]],{i,1,n},{j,1,m}]];

d2=Flatten[Table[Norm[datacomp[[i,j]

eMSE=Tot

]],{i,1,

al[MapTh

n},{j,

read[(

1,m}]];

#1-#2)2

2

&

S=Max[Join[

,d1,d2]]/n/m;

-10Log[10,eMSE/S

d1]];

]];

 

⇒ PSNR[data,datarec,338,338] 
⇐ 33.0012  

We may compare the original image with the reconstructed one via built in 
function computing image distance, see Sect. 1.7.2, 

⇒
→

ImageDistance[img,img75,

DistanceFunction "DifferenceNormalizedEntropy"] 
⇐ 0.643046  

Similar computation can be done for ~94% compression, too. 

Discrete Wavelet Transform 
The corresponding wavelet compression in case of 75% compression, 

⇒ dwd = DiscreteWaveletTransform[img, DaubechiesWavelet[4], 1]; 
In order to get fancy images of the residual images, we may introduce the 

following function, 
⇒ imgFunc[img_,{___,1|2|3}]:=Composition[Sharpen[#,0.5]&,

ImageAdjust[#,{0,1}]&,ImageAdjust,ImageApply[Abs,#1]&][img]

imgFunc[img_,wind_]:=

Composition[ImageAdjust,ImageApply[Abs,#1]&][img]

 

Then image boxes, see in Fig. 1.93. 
⇒

→ →
WaveletImagePlot[

dwd,Automatic,imgFunc[#1,#2]&,BaseStyle Red,ImageSize 338] 
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⇐   
Fig. 1.93 The image boxes of the DWT 

The reconstructed image (Fig. 1.94), 
⇒ img75W=dwd[{{0}}, 

{"Rules", "Inverse", "Image"}][[1,2]]//RemoveBackground  

⇐   
Fig. 1.94 The reconstructed image of DWT 

Let us compute the image quality measures, 
⇒ PSNR[data,ImageData[img75W],338,338] 
⇐ 16.054  

and 
⇒

→
ImageDistance[

img,img75W,DistanceFunction "DifferenceNormalizedEntropy"] 
⇐ 0.484494  

Similar computation can be done for ~94% compression, too. 
Table 1.1 shows the images resulted by different compression methods at 

different compression ratios. This table indicates that PCA method performs 
better than DWT. 
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Table 1.1 Comparing the compressed images 

Method Compression 75% Compression 94% 
PCA 

DWT 

This conclusion can be verified by the PSNR values − higher values indicates 
better quality, however the values of the image distance contradict to this 
statement (Table 1.2). This is not very surprising, since entropy is not perfect 
measure for color (multichannel) images. 

Table 1.2 Comparing the quality of compressed images 

Method Compression PSNR Image Distance 
PCA 75 33 0.64 
DWT 75 16 0.48 
PCA 94 22 0.71 
DWT 94 15 0.52 
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Chapter 2 
Classification 
 
 
 
 
 
 
 
 
 
 
 
Machine learning classifications are different algorithms that help machines to 
detect patterns in data and make predictions based on those learned patterns using 
algorithms. 

The categories of algorithms for machine learning include supervised, 
unsupervised, and reinforcement learning. Machine learning classification falls 
under the category of supervised learning. This method’s main benefit is that it 
trains algorithms by using labeled data sets. 

Since machine learning independently determines when new data is put in the 
system and the relationship between the input and output of data according to the 
classification, the system continually updates itself depending on the patterns it 
detects. The most important techniques are demonstrated by Python as well as 
Mathematica codes, respectively. 

2.1 KNearest Neighbors Classification 

Basic Theory 

KNearest Neighbors Classification is the simplest, purely data-driven algorithm 
that can be used either for classification or regression tasks. In geosciences 
literature, it is known as the Voronoi polygons, while in numerical simulations, it 
is known as Dirichlet cells (Müller and Guido 2017). 

To employ it for classification, an existing set of example data is labeled as the 
training set where for all the data, the class from which each piece of the data 
belong to is known. Whenever a new piece of data without a label is given, it is 
compared to the labeled existing piece of data and the most similar (closest 
according to a given measure) pieces of data (the nearest neighbors) is then taken 
and their labels considered. We look at the top k most similar pieces of data from 
our known dataset; this is where the k comes from (k is an integer usually less than 
20). Lastly, a majority vote is taken from the k most similar pieces of data, where 
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this majority becomes the new class assigned to the data we were asked to classify, 
see Fig. 2.1. 

Fig. 2.1 Principle of KNearest Neighbors Classification in case of two classes and employing 
k = 3 neighbors, adopted from Müller and Guido (2017) 

Generally k, which depends on data and on the presence of structures in the 
data, is a hyper-parameter that should be tuned adaptively. A common approach 
to find the optimal value of k is to use the cross-validation procedure. In n-fold 
cross-validation, the original training data set is partitioned into n-subsets. In a 
special case (leave - one - out) a single observation is selected from the original 
data set as validation point. One from the n-subset is used as the validation data 
for testing the model, and the remaining n-1 subsets are used as training data. The 
validation error is calculated with the process repeated n times and the averaged 
validation errors used as a single cross validation error estimation for a specified 
parameter k. The procedure is repeated for different tuning parameter values of k, 
with the model that provides the lowest cross-validation error chosen as the 
optimal (k) one. 

The advantages of the algorithm are the high accuracy, insensitivity to 
outliers and no special assumption about the data. However it is 
computationally expensive and requires a lot of memory.  

2.1.1 Small Data Set 

As a first example, we consider a small data set from the mglearn  package of 
Python. For Mathematica we may write the data into an ASCII file (Navlani 2018) 

To use Python in Mathematica, we start a Python session, 
⇒

→
→ →

session=

StartExternalSession[<|"System" "Python",

"Version" "3.5.4","Executable"

"C:\Users\Ben\AppData\Local\Programs\Python\Python35\

python.exe"|>]//Quiet

⇐ ExternalSessionObject[  
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import mglearn
import numpy as np
X, y = mglearn.datasets.make_forge()
np.savetxt('G:\\dataX.txt',X,fmt='%.5e')

 

The data elements to be classified are featured by 2D vectors, 
⇒ X=Import["G:\\dataX.txt","Table"]; 

However if the file is short, we do not write the data into a file. The labels of 
the elements, 

  
y  

⇐ {1,0,1,0,0,1,1,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0,1,0}  
⇒ y=%;  

It means we have two classes. Let us visualize the data, see Fig. 2.2. 
⇒ class1=Pick[X,y,0];  
⇒ class2=Pick[X,y,1];  
⇒ → →

→ → →
p0=ListPlot[{class1,class2},PlotStyle {Green,Red},Frame True,

Axes None,PlotMarkers {Automatic,Medium},AspectRatio 1]  

⇐

 

 
Fig. 2.2 Small dataset 

Let us carry out the classification first with Mathematica. 

Mathematica 

We prepare the data for Mathematica as Element → Label, 
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⇒ →trainingData=Thread[X y];  
First we employ k =1 neighbour with exhaustive search technique on the entire 

dataset ("Scan") 
⇒ →

→ →
c1=Classify[trainingData,Method {"NearestNeighbors",

"NeighborsNumber" 1,"NearestMethod" "Scan"}];  

The result can be seen on Fig. 2.3. 
⇒

→
p1=Show[{DensityPlot[c1[{u,v}],{u,7.5,12},{v,-1,6},

ColorFunction "CMYKColors"],p0}]  

⇐   
Fig. 2.3 Classification with k = 1 

Let us investigate the effect of the number of neighbours on the quality of the 
classification. We shall consider k = 3 and k = 9 neighbours. 

⇒ →
→ →

c3=Classify[trainingData,Method {"NearestNeighbors",

"NeighborsNumber" 3,"NearestMethod" "Scan"}];  
⇒ →

→ →
c9=Classify[trainingData,Method {"NearestNeighbors",

"NeighborsNumber" 9,"NearestMethod" "Scan"}];  

The results can be seen on Fig. 2.4. 
⇒

→
p3=Show[{DensityPlot[c3[{u,v}],{u,7.5,12},{v,-1,6},

ColorFunction "CMYKColors"],p0}];  
⇒

→
p9=Show[{DensityPlot[c9[{u,v}],{u,7.5,12},{v,-1,6},

ColorFunction "CMYKColors"],p0}];  

⇒ GraphicsGrid[{{p3,p9}}] 
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⇐  
Fig. 2.4 Classification via Nearest Neighbor k = 3 and k = 9 

 
We can compare the labels of the data elements with the labels provided by 

the method using different number of neighbours. The best result is given for 
1k = . 

⇒ y1=Map[c1[#]&,X] 
⇐ {1,0,1,0,0,1,1,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0,1,0}  
⇒ y3=Map[c3[#]&,X] 
⇐ {1,0,1,0,1,1,1,0,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0,0,1,0}  
⇒ y9=Map[c9[#]&,X] 
⇐ {1,0,1,0,1,1,1,0,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0,0,1,0}  

The norm of the errors are 
⇒ Norm[y-y1] 
⇐ 0  
⇒ Norm[y-y3] 
⇐ 2  
⇒ Norm[y-y9] 
⇐ 2  

This result indicates, that the 1k =  is the best solution. However, the third one (
9k = ) seems to be more robust, since the different data elements are far from the 

boundary of the two classes, therefore this configuration is not so sensitive to the 
measurement errors of the feature vectors. 

Python 
Let us employ Python for 1k = , 

  

# from sklearn.neighbors import KNeighborsClassifier
clf=KNeighborsClassifier(n_neighbors=1).fit(X,y)
prediction=clf.predict(X)
prediction
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⇐ {1,0,1,0,0,1,1,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0,1,0}

 

⇒ yP1=%; 
Then computing the error vectors, 

⇒ Norm[y-yP1] 
⇐ 0  

We have got the same result. 
In this example only training set was employed. Now let us employ a test set, 

too, in order to check the generalization ability of our classifier. It can be done 
easily in Python. 

  

from sklearn.model_selection import train_test_split
X, y = mglearn.datasets.make_forge()
X_train, X_test, y_train, y_test=
 train_test_split(X, y, random_state=0)

 

The total data set has been randomly split. 

  
X_train  

⇐ {{8.9223,-0.639932},{8.73371,2.49162},{9.32298,5.09841},

{7.99815,4.85251},{11.033,-0.168167},{9.17748,5.09283},

{11.564,1.33894},{9.15072,5.49832},{8.3481,5.13416},

{11.9303,4.64866},{8.10623,4.28696},{8.67495,4.47573},

{9.67285,-0.202832},{9.50169,1.93825},{8.69289,1.54322},

{9.96347,4.59677},{9.50049,-0.264303},{9.25694,5.13285},

{8.68937,1.4871}}

 

⇒ Xtrain=%;  

  
X_test  

⇐ {{11.5416,5.21116},{10.0639,0.990781},{9.49123,4.33225},

{8.18378,1.29564},{8.30989,4.80624},{10.2403,2.45544},

{8.34469,1.63824}}

 

⇒ Xtest=%; 

  
y_train  

⇐ {0,0,1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0} 
⇒ ytrain=%; 

  
y_test  

⇐ {1,0,1,0,1,1,0} 
⇒ ytest=%;  

So we have now 19 elements in the training set and 7 elements in the test set. 
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Mathematica 
Now using the training set, we create a classifier with 3 neighbors. 

⇒ →trainingData=MapThread[#2 #1&,{ytrain,Xtrain}]; 
⇒ →

→ →
ctrained=Classify[trainingData,Method {"NearestNeighbors",

"NeighborsNumber" 3,"NearestMethod" "Scan"}];
 

Testing the classifier on the training data 
⇒ →trainingData=MapThread[#2 #1&,{ytrain,Xtrain}]; 
⇒ ctraining=ClassifierMeasurements[ctrained,trainingData] 

⇐ ClassifierMeasurementsObject
 

The accuracy of the classifier on the training set, 
⇒ ctraining["Accuracy"] 
⇐ 0.947368  

The confusion matrix shows the number of the misclassified elements as   off-
diagonal elements, see Fig. 2.5. 

⇒ ctraining["ConfusionMatrixPlot"] 

⇐   
Fig. 2.5 Confusion matrix for the training set 

 
Now let us see the same statistics for the test set, which was not involved in 

the training process. 
⇒ →testingData=MapThread[#2 #1&,{ytest,Xtest}]; 
⇒ ctesting=ClassifierMeasurements[ctrained,testingData] 

⇐ ClassifierMeasurementsObject
 

The test set accuracy is represented by Fig. 2.6, 
⇒ ctesting["Accuracy"] 
⇒ 0.857143  
⇐ ctesting["ConfusionMatrixPlot"] 
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⇐   
 Fig. 2.6 Confusion matrix for the test set 

Python 
Training the classifier (Groswami 2018) 

  
from sklearn.neighbors import KNeighborsClassifier
clf=KNeighborsClassifier(n_neighbors=3).fit(X_train,y_train) 

Result of the prediction on the training set, 

  
prediction=clf.predict(X_train)
prediction)  

⇐ {0,0,1,1,0,1,0,1,1,1,1,1,0,0,0,1,0,1,0} 

and it can be seen that only one element is misclassified. 
⇒ ytrain  
⇐ {0,0,1,1,0,1,0,1,1,1,0,1,0,0,0,1,0,1,0} 

Result of the prediction on the test set, 

  

from sklearn.neighbors import KNeighborsClassifier
clf=KNeighborsClassifier(n_neighbors=3).fit(X_train,y_train)
prediction=clf.predict(X_test)
prediction

 

⇐ {1,0,1,0,1,0,0} 
⇒ ytest  
⇐ {1,0,1,0,1,1,0} 

Again, only one element is misclassified. The accuracy can be also computed 
similarly as in Mathematica. 

The accuracy on the training set, 

  
print("Test set score: {:.2f}".format(clf.score(X_train, 
 y_train)))  

Test set score: 0.95  
The accuracy on the test set, 
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print("Test set score: {:.2f}".format(clf.score(X_test, 
 y_test)))  

Test set score: 0.86  
Both codes provided the same results. 

2.1.2 Vacant and Residential Lands 

There are two classes of RGB images of vacant and residential land, see Figs. 2.7 
and 2.8. 

Vacant Land 
⇒ vacant=  

{ , , , , , , 

  , , , , , , 

  , , , } 
Fig. 2.7 Vacant land areas 

Residential Areas 

⇒ residental=  

{ , , , , , , 

  , , , , , , 

  , , , } 
Fig. 2.8 Residental land areas 

We would like to design a KNearest Neighbors classifier for classifying 
images into these two classes, namely vacant or residential areas. As can be seen 
from the images, this classification problem is not an easy task. The images are 
RGB images with different sizes. It is reasonable to convert these images as 
nominal data, into a feature vector as numerical data. One may use one of 
dimension reduction methods discussed in the Chap. 1. We have 12 images in the 
training set, and 4 images in the test set for the both categories (vacant and 
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residential lands). Autoencoding is employed to transform images into a feature 
vectors of size of 64 elements. 

Let us create the training data 
⇒ lands=Join[vacant,residential];aining["Accuracy"] 

Since, they have different original sizes, we unify their size to 256×256,  
⇒ landsReduced=Map[ImageResize[#,{256,256}]&,lands]; 

Now, we can reduce the data size. Here, one should make a trade-off between 
size and saving characteristic features. The feature extraction method we use here 
is the t-SNE (t distributed Stochastic Neighbor Embedding) method, which 
requires a big amount of computation, therefore we use of GPU (Graphic 
Processing Unit), instead of CPU (Central Processing Unit), 

⇒ →
→

reduced=DimensionReduce[landsReduced,64,Method "TSNE",

TargetDevice "GPU"];  

So we have 16 -16 vectors of size 64, 

⇒ Dimensions[reduced] 
⇐ {32,64} 

The vectors of vacant land images are 
⇒ V=Take[reduced,{1,16}]; 

similarly those of the residential images are, 

⇒ R=Take[reduced,{17,32}];  
Let us label the vacant lands with label 0 and the residential lands with 1, 

⇒ yV=Table[0,{i,1,16}]; 
⇒ yR=Table[1,{i,1,16}]; 

For training we randomly select 12 feature vectors from both classes, 

⇒ SeedRandom[1035];

 

⇒ VTR=RandomSample[V,12]; 
⇒ RTR=RandomSample[R,12]; 

The remaining vectors represent the testing set, 

⇒ VTE=Complement[V,VTR];  
⇒ RTE=Complement[R,RTR]; 

Then the training set, 
⇒ Xtrain=Join[VTR,RTR];  

The corresponding labels, 
⇒ ytrain=Join[Table[0,{i,1,12}],Table[1,{i,1,12}]] 
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⇐ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}  
Similarly, the test set, 

⇒ Xtest=Join[VTE,RTE]; 
The corresponding labels, 

⇒ ytest=Join[Table[0,{i,1,4}],Table[1,{i,1,4}]] 
⇐ {0,0,0,0,1,1,1,1}  

Let us save these sets in files for Python as mtx file, 
⇒ Export["G:\\Xtrain.mtx",Xtrain]; 
⇒ Export["G:\\Xtest.mtx",Xtest]; 
⇒ Export["G:\\ytrain.mtx",{ytrain}]; 
⇒ Export["G:\\ytest.mtx",{ytest}]; 

Now after the data preparation let start the classification. 

Mathematica 
Training process with k = 1 neighbors, 

⇒ →trainingData=MapThread[#1 #2&,{Xtrain,ytrain}];  
⇒

→ →
AbsoluteTiming[c=Classify[trainingData,

Method {"NearestNeighbors","NeighborsNumber" 1}];] 
⇐ {0.768199,Null} 

Checking the accuracy on the training set, see Fig. 2.9 
⇒ ctraining=ClassifierMeasurements[c,trainingData] 
⇐ ClassifierMeasurementsObject

 
⇒ ctraining["Accuracy"] 
⇐ 1  
⇒ ctraining["ConfusionMatrixPlot"] 

⇐   
 Fig. 2.9 Confusion matrix for the training set in case k = 1 

2.1  KNearest Neighbors Classification 89



 

The error on the training set, 
⇒ yTR=Map[c[#]&,Xtrain] 
⇐ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}  
⇒ Norm[yTR-ytrain] 
⇐ 0  

Let us check the accuracy and the confusion matrix (see Fig. 2.10) of the classifier 
on the test set, 

⇒ →testingData=MapThread[#1 #2&,{Xtest,ytest}];

 

⇒ ctesting=ClassifierMeasurements[c,testingData] 
⇐ ClassifierMeasurementsObject

 
⇒ ctraining["Accuracy"] 
⇐ 1  
⇒ ctraining["ConfusionMatrixPlot"] 

⇐   
 Fig. 2.10 Confusion matrix for the test set in case k = 3 
 

⇒ yTE=Map[c[#]&,Xtest] 
⇐ {0,0,0,0,1,1,1,1}  
⇒ Norm[yTE-ytest] 
⇐ 0  

Table 2.1 shows the result in case of different number of neighbors. 

Table 2.1 Results with Mathematica 

Neighbors Time [sec] Accuracy 
training set 

Accuracy 
test set 

1 0.78 1.00 1.00 
2 0.80 0.92 0.88 
3 0.76 0.88 0.88 
4 0.86 0.83 0.75 
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Python 

  
import numpy as np
from numpy import array, matrix
from scipy.io import mmread, mmwrite

 

Input data for the training 

  
Xtrain=mmread('G:\\Xtrain.mtx')
y=mmread('G:\\ytrain.mtx')
ytrain=y[0]

 

Training process 

  
from sklearn.neighbors import KNeighborsClassifier
clf=KNeighborsClassifier(n_neighbors=1).fit(Xtrain,ytrain) 

Prediction accuracy on the training 

  
prediction=clf.predict(Xtrain)
prediction  

⇐ {0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1}  
⇒ yPTR=%; 

The error on the training set 
⇒ Norm[ytrain-yPTR] 
⇐ 0  

The accuracy on the training set 

  
print("Training set score: {:.2f}".format(clf.score
 (Xtrain, ytrain)))  

Training set score: 1.00  
The error on the test set 

  
Xtest=mmread('G:\\Xtest.mtx')
y=mmread('G:\\ytest.mtx')
ytest=y[0]

 

  
prediction=clf.predict(Xtest)

prediction
 

⇐ {0,0,0,0,1,1,1,1}  
⇒ yPTE=%; 
⇒ Norm[yPTE-ytest] 
⇐ 0  

The accuracy on the test set 

  
print("Test set score:{:.2f}".format(clf.score(Xtest,ytest))) 

Training set score: 1.00  
Remark 
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Mathematica and Python give the same result. One should keep in mind since the 
elements of the training and test sets selected randomly, therefore the result of a 
new run can be different. 

2.2 Logistic Regression 

Basic Theory 

Let us consider an element featured by the vector 1 2,{ }, ,i mz x x x= …  and labeled 
by yi. Logistic regression can be considered as a special shallow neural network, 
where the activation function is a sigmoid function, see Fig. 2.11 (Brownlee 
2016). 

Fig. 2.11 Principle of Logistic Regression 

The output of the sigmoid function can be interpreted as the probability of a 
particular sample belonging to class 1, 

( ) ( )1 1 :
1 Exp( )iz P y z w

z
= = =

+ −
φ . 

given its feature vector z parametrized by weights w. Since this method is basically 
a binary classification technique, sometimes a threshold function (unitstep or 
Heaviside) is added. The cost function is the log - likelihood function to be 
maximized for getting optimal weights, 
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In Mathematica and in Python the objective function can be extended by L1 
and L2 regularization terms, 
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where λi are regularization parameters (Prince 2012). 

Remark 
The basic idea is good for binary classification only. However there is a possibility 
to generalize the binary technique for example in many successive steps. The 
technique is called as one against more: Assuming k classes we start with two 
classes with labels 1 and the other with (2, 3, ... k), then again two classes with 
elements labeled 2 and others (3,..k). 

The advantages of this algorithm are that computationally inexpensive, easy 
to implement and knowledge representation easy to interpret. However it is prone 
to have low accuracy. 

As first example, let us consider the Iris Classification problem. 

2.2.1 Iris Data Set 

Now, we have 150 samples, two features: petal length and petal width, and three 
target sets: Iris-setosa (0), Iris-versicolor (1) and Iris-virginica (2). Let us start with 
Python. 

Python 
Let us read the elements to be classified (X) and their labels (y), 

  
from sklearn import datasets
iris=datasets.load_iris()  

  
X=iris.data[:,[2,3]]
y=iris.target  

Save X in file for Mathematica, 

  
import numpy as np  

  
np.savetxt('M:\\dataX.txt',X,fmt='%.2e') 

Training  Python regressor, 

  
from sklearn.linear_model  import LogisticRegression
lr=LogisticRegression(C=100.0,random_state=1).fit(X,y) 

The result of Python 

  
lr.predict(X[:150,:]) 
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⇐ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,

1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,

2,2,2,2,2,2,2,2,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}

 

⇒ yP=%; 
The original training labels, 

  
y  

⇐ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,

2,2,2,2,2,2,2,2,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}

 

⇒ yTR=%; 
The error is 

⇒ Norm[yP-yTR] 
⇐ 6  

The accuracy on the training set, 

  
print("Training set score: {:.2f}".format(lr.score(X, y))) 

Training set score: 0.96  

Mathematica 
Reading the data 

⇒ Xtrain=Import["M:\\dataX.txt","Table"]; 
The total training set 

⇒ dataT=MapThread[Join[#1,{#2}]&,{Xtrain,yTR}]; 
In order to visualize the three data sets, we separate the training set into the 

three classes, 
⇒ data0=Map[{#[[1]],#[[2]]}&,Select[dataT,#[[3]]==0&]];

data1=Map[{#[[1]],#[[2]]}&,Select[dataT,#[[3]]==1&]];

data2=Map[{#[[1]],#[[2]]}&,Select[dataT,#[[3]]==2&]];
 

Then Fig. 2.12 shows the elements to be classified, 

94 2  Classification



 

⇒ →
→ → →

→ →
→

p0=ListPlot[{data0,data1,data2},PlotStyle {Green,Blue,Red},

Frame True,Axes None,PlotMarkers {Automatic},

AspectRatio 0.9,FrameLabel {"petallength","petal width"},

Frame True]

 

⇐   
 Fig. 2.12 The three classes of the Iris-data set 
 
The training set, 

⇒ →dataTrain=Map[{#[[1]],#[[2]]} #[[3]]&,dataT]; 
The training process, 

⇒ →
→

c=Classify[dataTrain,Method "LogisticRegression",

PerformanceGoal "Quality"];  

Then the accuracy of the classifier on the training set 

⇐ ClassifierMeasurementsObject
 

and 
⇒ ctraining["Accuracy"] 
⇐ 0.96  

Figure 2.13 shows the confusion matrix, 
⇒ ctraining["ConfusionMatrixPlot"] 
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⇐   
 Fig. 2.13 The confusion matrix of the training set 

Let us visualize the three classes, see Fig. 2.14, 
⇒

→
Show[{DensityPlot[c[{u,v}],{u,0,7},{v,-1,4.5},

ColorFunction "CMYKColors",PlotPoints->50],p0},

AspectRatio->1.2]
 

⇐   
 Fig. 2.14 The three classes of the Iris-data set 

 
The error of the classification can be characterized with the norm of the 
misclassified elements 

⇒ yP=Map[c[#]&,Join[{data0,data1,data2}]]//Flatten; 
⇒ Norm[yTR-yP] 
⇐ 6  

We have got the same result. 
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2.2.2 Digit Recognition 

The digits are represented as grey images of size 26×16, with pixel values [0,1]∈
. For example let us consider digit 2, 

⇒ image=   ; 
⇒ dataD=ImageData[image]; 
⇒ Dimensions[dataD] 
⇐ {20,16} 

Let us visualize the image of the digit 2 (Fig. 2.15), 

⇒ MatrixPlot[dataD] 

⇐   
 Fig. 2.15 The image of a digit 2 

Our training set is, 
⇒ digitset=  

{  →2,  →5,  →8,  →0,  →2,  →7,  →5,  →1,  →3, 

   →0,  →3,  →9,  →6,  →2,  →8,  →2,  →0,  →4, 

   →6,  →1,  →1,  →7,  →8,  →5,  →0,  →4,  →7, 

   →6,  →0,  →2,  →5,  →3,  →1,  →5,  →6,  →7, 

   →5,  →4,  →1,  →9,  →3,  →6,  →8,  →0,  →9, 

   →3,  →0,  →3,  →7,  →4,  →4,  →3,  →8,  →0, 

   →4,  →1,  →3,  →7,  →6,  →4,  →7,  →2,  →7, 

   →2,  →5,  →2,  →0,  →9,  →8,  →9,  →8,  →1, 

   →6,  →4,  →8,  →5,  →8,  →0,  →6,  →7,  →4, 

   →5,  →8,  →4,  →3,  →1,  →5,  →1,  →9,  →9, 

   →9,  →2,  →4,  →7,  →3,  →1,  →9,  →2,  →9, 

   →6}; 

which contains 100 elements. 
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Now in order to improve the generalization ability, we introduce a validation 
set beside the test set. The validation set will be included in the training process 
however its error is just monitored and does not influence the parameter change 
of the classifier. This technique can hinder over-fitting, similarly to the 
regularization. We randomly select these three sets. 

⇒ RandomSeed[1234];

 

⇒ trainingset=RandomSample[digitset,70]; 
⇒ validationset=RandomSample[digitset,15]; 
⇒ testset=RandomSample[digitset,15]; 

Mathematica 
Now, the training with the validation set results,

 

⇒ →
→ →

logistic=Classify[trainingset,ValidationSet validationset,

Method "LogisticRegression",PerformanceGoal "Quality"]  

⇐ ClassifierFunction
 

Testing the classifier on the training data 
⇒ ctraining=ClassifierMeasurements[logistic,trainingset] 
⇐ ClassifierMeasurementsObject

 
⇒ ctraining["Accuracy"] 
⇐ 1.  

The confusion matrix is on Fig. 2.16 
⇒ ctraining["ConfusionMatrixPlot"] 

⇐   
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Fig. 2.16 The confusion matrix on the training set 



 

 Testing the classifier on the test data 
⇒ ctesting=ClassifierMeasurements[logistic,testset] 
⇐ ClassifierMeasurementsObject

 
⇒ ctesting["Accuracy"] 
⇐ 0.866667  

The confusion matrix (Fig. 2.17), 
⇒ ctesting["ConfusionMatrixPlot"] 

⇐   
Fig. 2.17 The confusion matrix on the test set 

 
Here we used images of the digits as nominal input, no numerical encoding was 
employed. 

Python 
Now we employ 75 elements in the training set and 25 elements in the test set. 
There is no validation set. 

⇒ Xtrain=RandomSample[digitset,75];  
⇒ Xtest=Complement[digitset,Xtrain]; 

The size of the images of the digits is somewhat different, that is why we 
should use resizing process. The resized grey images are of size 16×20. Therefore 
we use a feature vector of size 320 for each digits. 

The elements and labels for the training set (numerical encoding). 
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⇒ Xtra=

Map[Flatten[ImageData[ImageResize[#[[1]],{16,20}]],1]&,Xtrain]; 
⇒ ytra=Map[#[[2]]&,Xtrain]; 

Similarly for the test set, 
⇒ Xtes=

Map[Flatten[ImageData[ImageResize[#[[1]],{16,20}]],1]&,Xtest]; 
⇒ ytes=Map[#[[2]]&,Xtest];  

Saving these data for Python, 
⇒ Export["Xtest.mtx",Xtes];  
⇒ yy={ytes}; 
⇒ Export["ytest.mtx",yy]; 
⇒ Export["Xtrain.mtx",Xtra]; 
⇒ yy={ytra}; 
⇒ Export["ytrain.mtx",yy];  

Feature vectors of size 320 representing a digit as an image, 

⇒ Xtra//Dimensions  
⇐ {75,320}  

Preparing for reading *.mtx files, 

  
import numpy as np
from numpy import array, matrix
from scipy.io import mmread, mmwrite

 

Reading data, 

  
X=mmread('Xtrain.mtx')
y=mmread('ytrain.mtx')
yy=y[0]

 

Training process, 

  
from sklearn.linear_model  import LogisticRegression
lr=LogisticRegression(C=100.,random_state=1).fit(X,yy) 

The prediction of Python 

  
ytr=lr.predict(X) 

  
ytr  

⇐ {0,9,7,7,7,4,1,2,5,1,1,5,0,0,1,3,7,0,1,1,8,9,8,9,4,

0,6,5,5,5,7,3,8,6,9,8,7,9,1,9,5,6,8,6,4,1,7,2,6,6,

0,2,2,0,5,9,1,3,3,7,4,2,4,2,5,3,7,2,8,4,0,3,5,8,2}
 

⇒ yP=%; 
The original training labels 
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⇒ yy  
⇐ {0,9,7,7,7,4,1,2,5,1,1,5,0,0,1,3,7,0,1,1,8,9,8,9,4,

0,6,5,5,5,7,3,8,6,9,8,7,9,1,9,5,6,8,6,4,1,7,2,6,6,

0,2,2,0,5,9,1,3,3,7,4,2,4,2,5,3,7,2,8,4,0,3,5,8,2}
 

⇒ yT=%; 
The error is 

⇒ Norm[yP-yT] 
⇐ 0  

The accuracy on the training set 

  
print("Training set score: {:.2f}".format(lr.score(X, yy))) 

Training set score: 1.00  
The Python result on the test set, 

  
Xt=mmread('Xtest.mtx')
yt=mmread('ytest.mtx')
yt

 

⇐ {4,1,9,4,9,6,6,0,7,8,3,9,6,3,3,4,6,8,2,2,3,4,8,5,0} 
⇒ yT=First[%];  

  
yte=lr.predict(Xt)
yte  

⇐ {4,1,9,1,9,6,8,0,7,8,3,9,6,3,5,4,1,8,3,2,3,4,8,5,4} 
⇒ yP=%; 

The error on the test set 
⇒ Total[MapThread[If[Abs[#1-#2]>0,1,0]&,{yT,yP}]] 
⇐ 6  

In percentage 

⇒ 100 -6/25 100  
⇐ 76  

The accuracy on the test set using built in function 

  
print("Test set score: {:.2f}".format(lr.score(Xt, yt[0]))) 

Training set score: 0.76  
Mathematica provides somewhat better result because of using validation set, 

however Python parameter C= 100 indicating regularization, also gives certain 
improvement on the test set (Fortuner 2019). 
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2.3 Tree Based Methods 

Basic Theory 

The Decision Tree is one of the most commonly used non-parametric 
classification technique. In case of non parametric model, the model has no 
parameter to be estimated and the applied algorithm dominates. Based on features 
in data, decision tree models learn a series of questions to infer the class labels of 
samples. During this process the data will be subsequently split in order to 
decrease the impurity of the data measured by entropy of data. The more the data 
is mixed, the higher is the entropy. Information gain is the expected reduction in 
entropy caused by partitioning the examples according to a given attribute. The 
idea is to start with mixed classes and to continue partitioning until each node 
reaches its observations of purest class (Dangeti 2017). 

The advantages of this algorithm are that computationally inexpensive, easy 
to implement and knowledge representation easy to interpret. However it is prone 
to have low accuracy. 

Further features are: Shape of the model is not predefined; model fits in best 
possible classification based on the data instead. Provides best results when most 
of the variables are categorical in nature and outliners and missing values are dealt 
with grace in decision trees. 

One may improve the performance of the Decision Tree Classifier via using 
weights or employing an ensemble of tree models called as Random Forest 
Method. 

This can be considered as an ensemble of decision trees and the algorithm is 
basically the following: 
1) Randomly chosen sample size n from the training set with replacement,
2) Carry out decision tree computation,
3) Repeat the steps 1) - 2) k times,
4) Aggregate the prediction by each tree to assign the class label by majority vote.

Advantages: low variance, robust model, less sensitive to overfitting. Most
important parameter is the number of trees (Skerritt 2018). 

2.3.1 Playing Tennis Today? 

Explanatory Example 
In the following example, the response variable has only two classes: whether to 
play tennis or not. Will John play tennis or not, when the outlook of the weather 
is rainy, the humidity is high and the wind is weak? Table 2.2 has been compiled 
based on various conditions recorded on various days 

The following information is available, 

102 2  Classification



 

Table 2.2 Results with Mathematica 

Day Outlook Humidity Wind Play 
D1 Sunny High Weak No 
D2 Sunny High Strong No 
D3 Overcast High Weak Yes 
D4 Rain High Weak Yes 
D5 Rain Normal Weak Yes 
D6 Rain Normal Strong No 
D7 Overcast Normal Strong Yes 
D8 Sunny High Week No 
D9 Sunny Normal Weak Yes 

D10 Rain Normal Weak Yes 
D11 Sunny Normal Strong Yes 
D12 Overcast High Strong Yes 
D13 Overcast Normal Week Yes 
D14 Rain High Strong No 

 
Features →  Outlook: Values → Sunny, Rain, Overcast, 
 Humidity: Values → High, Normal, 
 Wind:  Values  →  Weak, Strong,   
Class →  Play: Values → Yes, No. 

The training examples indicate 9 Yes vs. 5 No 

Our training set has 14 elements. An input element is characterized by a non-
numeric feature vector with 3 elements (Outlook, Humidity and Wind). The output 
is binary (Yes, No) saying that the input belongs to the set Play or does not. 

The prediction problem is: Does the input element (Rain, High, Weak) belong 
to set Play or not? Let us separate the elements of the training set according to the 
first feature Outlook. We get three subsets (Values) Sunny, Overcast and Rain. 
The set Sunny can be classified according to the second feature Humidity while 
the set Rain can be classified according to the third feature Wind. In this way we 
get five sets: the first two are pure in the feature Humidity, the third in the Outlook 
and last two in the Wind. See Fig. 2.18. 
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⇐   
Fig. 2.18 Pure subsets of the decision tree 

 
The evaluation of the tree can be seen in Fig. 2.19, according to the result the 

prediction is yes. 
 

⇐  
Fig. 2.19 Evaluation of the decision tree. In our case: (Rain, High, Weak) → Yes 
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Let us solve the problem with Mathematica. The input-out pairs according to 
Table 2.2 are. 

Mathematica 
⇒ →

→
→

→
→

→

dataTraining={{"Sunny","High","Weak"} "No",

{"Sunny","High","Strong"} "No",

{"Overcast","High","Weak"} "Yes",

{"Rain","High","Weak"} "Yes",

{"Rain","Normal","Weak"} "Yes",

{"Rain","Normal","Strong"} "No",

→
→

→
→

→
→

{"Overcast","Normal","Strong"} "Yes",

{"Sunny","High","Weak"} "No",

{"Sunny","Normal","Weak"} "Yes",

{"Rain","Normal","Weak"} "Yes",

{"Sunny","Normal","Strong"} "Yes",

{"Overcast","High","Strong"} "Yes",

{" →
→

Overcast","Normal","Weak"} "Yes",

{"Rain","High","Strong"} "No"};

 

⇒ →TableForm[dataTraining,TableAlignments {Right,Center}] 
⇐ →

→
→

→
→

→
→

→
→

{Sunny,High,Weak} No

{Sunny,High,Strong} No

{Overcast,High,Weak} Yes

{Rain,High,Weak} Yes

{Rain,Normal,Weak} Yes

{Rain,Normal,Strong} No

{Overcast,Normal,Strong} Yes

{Sunny,High,Weak} No

{Sunny,Normal,Weak}

→
→
→
→

→

Yes

{Rain,Normal,Weak} Yes

{Sunny,Normal,Strong} Yes

{Overcast,High,Strong} Yes

{Overcast,Normal,Weak} Yes

{Rain,High,Strong} No

 

Let us create a classification function, 
⇒ →

→
c=Classify[dataTraining,Method "DecisionTree",

PerformanceGoal "Quality"]  
⇐ ClassifierFunction

 
Give our data as input for the classifier, 

⇒ c[{"Rain","High","Weak"}] 
⇐ Yes  
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Out of Yes or No, we can get the probabilities, too 
⇒ c[{"Rain","High","Weak"},"Probabilities"] 
⇐ → →<|No 0.142857,Yes 0.857143|>  

One may get more information about the classification process as well as about 
the classifier, 

⇒ ClassifierInformation[c] 

⇐

 

The accuracy of the classification process as well as the confusion matrix can 
be also easily computed (Fig. 2.20), 

⇒ cm=ClassifierMeasurements[c,dataTraining] 
⇐ ClassifierMeasurementsObject

 
⇒ cm["Accuracy"] 
⇐ 1.  
⇒ cm["ConfusionMatrixPlot"] 

⇐   
 Fig. 2.20 The confusion matrix 
 
Now let us employ Python to solve the problem. 
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In order to solve the problem with Python, we transform the dataset from 
nominal values into numerical ones, like 

⇒ →
→ → →

→ → →

dataX=Map[#[[1]]&,dataTraining]/.{"Sunny" 0.1,

"Overcast" 0.2,"Rain" 0.3,"High" 1.,

"Normal" .1,"Weak" 2.,"Strong" 2.1}
 

⇐ {{0.1,1.,2.},{0.1,1.,2.1},{0.2,1.,2.},{0.3,1.,2.},{0.3,1.1,2.},

{0.3,1.1,2.1},{0.2,1.1,2.1},{0.1,1.,2.},{0.1,1.1,2.},

{0.3,1.1,2.},{0.1,1.1,2.1},{0.2,1.,2.1},{0.2,1.1,2.},

{0.3,1.,2.1}}

 

Similarly, the output is binary value, 
⇒ → →datay=Map[#[[2]]&,dataTraining]/.{"Yes" 1,"No" 0}  
⇐ {0,0,1,1,1,0,1,0,1,1,1,1,1,0}  

Let us save these data for the Python system, 
⇒ Export["G:\\Xdata.txt",dataX]; 
⇒ Export["G:\\ydata.txt",datay];

 
Read data from txt files, 

  

X=[i for i in range(14)]
f=open('G:\\Xdata.txt','r')
for i in range(0,14):
 X[i]=list(ast.literal_eval(f.readline()))

 

  
X  

⇐ {{0.1,1.,2.},{0.1,1.,2.1},{0.2,1.,2.},{0.3,1.,2.},{0.3,1.1,2.},

{0.3,1.1,2.1},{0.2,1.1,2.1},{0.1,1.,2.},{0.1,1.1,2.},

{0.3,1.1,2.},{0.1,1.1,2.1},{0.2,1.,2.1},{0.2,1.1,2.},

{0.3,1.,2.1}}

 

  

y=[i for i in range(14)]
f=open('G:\\ydata.txt','r')
for i in range(0,14):
 y[i]=int(f.readline())

 

  
y  

⇐ {0,0,1,1,1,0,1,0,1,1,1,1,1,0}  

Training the classifier, 

  
from sklearn.tree  import DecisionTreeClassifier
tree=DecisionTreeClassifier(criterion='gini',max_depth=4,
random_state=1).fit(X,y)

 

In our case the input feature vector is {Rain,High,Weak}→{0.3,1.,2.}. 
Then the prediction of the classifier is, 
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import numpy as np
X_new=np.array([[0.3,1.,2.]])
prediction=tree.predict(X_new)
prediction

 

⇐ {1} 

Which means: Play! 

2.3.2 Snowmen and Dice 

We should like to classify images into two different categories, snowman and dice, 
see Figs. 2.21 and 2.22. 
 

 

 
 Fig. 2.21 Representatives of snowman category 
 

 

 
 Fig. 2.22 Representatives of dice category 

The feature extraction of these pictures  represented by image matrices of 64×64 
pixels, was carried out by wavelet transform using second order Daubechies filter, 
then employing averaging technique for seven nonoverlapping bands of the 
spectrum. For example let us consider the grayscale version of an image (see Fig. 
2.23), 

   
 Fig. 2.23 Image 

 
Do create the list form of the image matrix, 

⇒ dims = Flatten[ImageData[im]] 
The DFT using 6 levels of refinement, 
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⇒ wtr=DiscreteWaveletTransform[dims,DaubechiesWavelet[2],6] 

⇐ DiscreteWaveletData
 

Plotting the wavelet transform coefficients in the different refinement levels 
(Fig. 2.24), 

⇒ →WaveletListPlot[wtr,Ticks Full] 

⇐

  
 Fig. 2.24 DFT coefficients at different refinement levels 

 
The energy content of the coefficients  , , = 1,2,3, ...i j iW j n  at the i-th level 

may be expressed as, 

2
,

1

1log
in

i j
ji

W
n =

 
 
 
∑ . 

This can represent the i-th component of the feature vector of the image. 
For example considering that the first level 

⇒ Normal[wtr][[2]][[1]] 
⇐ {1} 

and the corresponding coefficients are (Fig. 2.25), 
⇒ →

→ → →
ListPlot[Normal[wtr][[2]][[2]],Joined True,

PlotStyle Purple,PlotRange All,AspectRatio 0.2] 

⇐

 

 
 Fig. 2.25 DFT coefficients at first refinement level 
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The energy content of this level, the first element of the feature vector can be 

computed as 

 
 
 

⇒
2Apply[Plus,Normal[wtr][[2]][[2]]]

Log //Abs
Length[Normal[wtr][[2]][[2]]]  

⇐ 5.97594  

Since 
⇒ Map[#[[1]]&,Normal[wtr]] 
⇐ {{0},{1},{0,0},{0,1},{0,0,0},{0,0,1},{0,0,0,0},{0,0,0,1},

{0,0,0,0,0},{0,0,0,0,1},{0,0,0,0,0,0},{0,0,0,0,0,1}}
 

Then the feature vector of the image is, see Fig. 2.24, 

⇒
2Apply[Plus,Normal[wtr][[2]][[2]]]

]
Length[Normal[wtr][[2]]

Map[Abs[Log[ ]

&,{2,4,6,8,10,11
[[2]]]

,12}]
 

⇐ {5.97594,3.93134,2.74834,1.71002,0.515124,2.58898,0.746729} 

Consequently the dimension of these feature vectors is seven, n = 7. The 
feature vectors of snowmen, 

⇒ Snowman=Import["M:\\Snowman.dat"]; 
⇒ Dimensions[Snowman] 
⇐ {10,7} 

and those of the dices, 
DiCes=Import["G:\\Dice.dat"];⇒  

The output value for the snowman class is 1 and for the dice class is 0. 
dataSetSnowman=Map[# 1&,SnowMan];⇒ →  
dataSetDice=Map[# 0&,DiCes];⇒ →  

From the 10 - 10 images, the first 7 - 7 ones are considered as elements of the 
training set, and the last 3 - 3 represent the test set. 
trainingData=Join[RandomSample[dataSetSnowman,7],

RandomSample[dataSetDice,7]];

⇒
 

First we solve the problem using Mathematica. 

Mathematica 
Let us create a classification function, employing Random Forest method, 
c=Classify[trainingData,Method "RandomForest",

PerformanceGoal "Quality"]

⇒ →
→  

⇐ ClassifierFunction
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The accuracy of the classification process as well as the confusion matrix can 
also be easily computed on the training data, see Fig. 2.26 
cm=ClassifierMeasurements[c,trainingData]⇒  

⇐ ClassifierMeasurementsObjec
 

cm["Accuracy"]⇒  
1.⇐  

⇒ cm["ConfusionMatrixPlot"] 

⇐   
 Fig. 2.26 The confusion matrix for the training set 
 
The same information for the test data, see Fig. 2.27 

The test set 
dataTest=Complement[Join[dataSetSnowman,dataSetDice],

trainingData];

⇒
 

cm=ClassifierMeasurements[c,dataTest]⇒  

⇒ ClassifierMeasurementsObject
 

cm["Accuracy"]⇒  
1.⇐  

⇒ cm["ConfusionMatrixPlot"] 
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⇐

Fig. 2.27 The confusion matrix for the test set 

Python 
First we should save the data sets for Python, 
Xtrain=Map[#[[1]]&,trainingData];⇒
ytrain=Map[#[[2]]&,trainingData];⇒
Xtest=Map[#[[1]]&,dataTest];⇒
ytest=Map[#[[2]]&,dataTest];⇒
Export["Xtr.mtx",Xtrain];⇒

Export["Xte.mtx",Xtest];⇒

Export["ytr.mtx",{ytrain}];⇒

Export["yte.mtx",{ytest}];⇒

This is a temporarily saving!
Preparation for reading *. mtx file into Python, 

  
from numpy import array, matrix
from scipy.io import mmread, mmwrite

  
Xtrain=mmread('Xtr.mtx')
ytra=mmread('ytr.mtx')  

Since mtx handles matrices, to get a vector, we consider as the "first" element 
of a matrix 

ytrain=ytra[0] 

Similarly for the test set, 

  
Xtest=mmread('Xte.mtx')
ytre=mmread('yte.mtx')  

ytest=ytre[0] 

Employing Random Forest Classifier, 
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from sklearn.ensemble import RandomForestClassifier
rf_fit = RandomForestClassifier(n_estimators=5000,
 criterion="gini",max_depth=5,min_samples_split=2,
 bootstrap=True,max_features='auto',random_state=42,
 min_samples_leaf=1).fit(Xtrain,ytrain)   

 

Carry out the prediction on the training set 

  
ytr=rf_fit.predict(Xtrain) 

  
ytr  

{1,1,1,1,1,1,1,0,0,0,0,0,0,0}⇐

 

y=%;⇒  
The error of the classifier on the training set 
Norm[ytrain-y]⇒  
0⇐  

Similarly on the test set 

  
yte=rf_fit.predict(Xtest) 

  
yte  

{1,1,1,0,0,0}⇐

 

y=%;⇒  
The error of the classifier 

Norm[ytest-y]⇒  
0⇐  

Alternatively we can employ scoring. 

  
print("Training set score:
 {:.2f}".format(rf_fit.score(Xtrain, ytrain))) 

Training set score: 1.00

   
print("Test set score:
 {:.2f}".format(rf_fit.score(Xtest, ytest))) 

Test set score: 1.00

 

 

2.4 Support Vector Classification 

Basic Theory 
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Support Vector Classification (SVC) is basically a binary classification method. 
We can use for linear as well nonlinear cases. It is especially useful when the 
feature vectors to be classified are long vectors representing many features. We 
can use it for linear as well as nonlinear classification. It is especially useful when 
the feature vectors to be classified are long vectors with many features 
(Christianini et al. 2000). 
 
Linear Classifier 
 
The classifier can be expressed as 

 = Ty w x . 

where x represents the feature vector to be classified, y is the label standing for a 
class and w is the vector of weights as parameter of the classifier. 

The method can be applied to linearly separable sets. In case of the AND 
1 2( , )x x  logical function we have a linearly separable problem. The decision line 

is 1 2α β γ= + +y x x , see Fig. 2.28, 

  
 Fig. 2.28 AND problem is linearly separable 
 

SVC provides margin maximization, see Fig. 2.29. From the infinite decision 
boundaries we select the one, which is most robust, less insensitive on the 
measurement errors, see Fig. 2.29 (Kecman 2011). 

  
 Fig. 2.29 Linear support vector classifier  
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SVC can be employed for nonlinear problem too. In case of the XOR 1 2( , )x x , see 
Table 2.3. 

Table 2.3 XOR logical table 

x1 x2 y 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
we have a linearly non-separable problem, see Fig. 2.30 

 
 Fig. 2.30 XOR problem is linearly not separable 
 

However to get a linear problem, let us introduce a new variable 3 1 2=x x x , see 
Table 2.4 

Table 2.4 XOR logical table with an additional variable 

x1 x2 x3 y 
0 0 0 0 
0 1 0 1 
1 0 0 1 
1 1 1 0 

 
We now have a 3D problem. Therefore the linear separation is possible with a 

2D hyper plane, see Fig. 2.31 
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Non-Linear Classifier 



 

 
 Fig. 2.31 Solution of the XOR problem in 3D 
 

Many times a nonlinear problem represented in a higher dimensional space 
can be considered as a linear one. This is the basic idea of the kernel trick. The 
kernel method employ a projection into a higher dimension, where the problem is 
a linearly separable one 

1 2 1 2 1 2( , )  ( , , )=K x x x x x x  

There are different types of kernels, for example: 

RBF kernel 

( ) ( )2
1 2 1 2, expK x x x xγ= − −  

Polynomial kernel 

( ) ( )1 2 1 2, dK x x c x xγ= +  

Sigmoid kernel 

( ) ( )1 2 1 2, tanhK x x c x xγ= +  

Characterizing the method 
Pros: High accuracy, insensitive to outliers, no assumptions about data, 

practically it is efficient for all type of problem 
Cons: Computationally expensive, requires a lot of memory 
Works with: Numeric values, nominal values 
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2.4.1  Margin Maximization 

The 2D vectors to be classified, first we demonstrate the margin maximization in 
case of linearly separable problem. Let us consider a small data set from Python 
repository mglearn. See Fig. 2.32. 

  
import mglearn
X,y= mglearn.datasets.make_forge()
X

 

{{9.96347,4.59677},{11.033,-0.168167},{11.5416,5.21116},

{8.69289,1.54322},{8.10623,4.28696},{8.30989,4.80624},

{11.9303,4.64866},{9.67285,-0.202832},{8.3481,5.13416},

{8.67495,4.47573},{9.17748,5.09283

⇐

},{10.2403,2.45544},

{8.68937,1.4871},{8.9223,-0.639932},{9.49123,4.33225},

{9.25694,5.13285},{7.99815,4.85251},{8.18378,1.29564},

{8.73371,2.49162},{9.32298,5.09841},{10.0639,0.990781},

{9.50049,-0.264303},{8.34469,1.63824},{9.50169,1.93825},

{9.15072,5.49832},{11.564,1.33894}}

 

u=%;⇒

 
The labels are 

  
y  

{1,0,1,0,0,1,1,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0,1,0}⇐  
v=%;⇒  

Mathematica 
Let us visualize them, see Fig. 2.33 
class1={};class2={};⇒  
MapThread[If[#1==0,AppendTo[class1,#2],

AppendTo[class2,#2]]&,{v,u}];

⇒
 

p0=ListPlot[{class1,class2},PlotStyle {Green,Red},

Frame True,Axes None,PlotMarkers {Automatic,Large},

AspectRatio 1]

⇒ →
→ → →

→
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⇐   
 Fig. 2.32 Data points for binary linear classification 
 

Let us employ Logistic Regression. In order to demonstrate the efficiency of 
the SVC, first let us employ 
trainingData=MapThread[#1 #2&,{u,v}];⇒ →  
c1=Classify[trainingData,Method "LogisticRegression",

PerformanceGoal "Quality"];

⇒ →
→

 
   The result can be seen in Fig. 2.34 

p1=Show[{DensityPlot[c1[{x,y}],{x,7.5,12},{y,-1,6},

ColorFunction "CMYKColors",PlotPoints 50],p0}]

⇒
→ →  

⇐   
 Fig. 2.33 Logistic classification seems optimal but not robust 
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This looks optimal solution however it is very sensitive for measurement errors 
since some data points belonging to the different classes are very close to the 
decision line! Employing SVC with linear kernel, we can get classification error, 
however the solution is robust, see Fig. 2.34 
c2=Classify[trainingData,Method {"SupportVectorMachine", 

"KernelType" "Linear"},PerformanceGoal "Quality"];

⇒ →
→ →  

p2=Show[{DensityPlot[c2[{x,y}],{x,7.5,12},{y,-1,6},

ColorFunction "CMYKColors",PlotPoints 80],p0}]

⇒
→ →  

⇐   
 Fig. 2.34 Linear SVC is not perfect but it is much more robust since it maximizes the margin 
 
Now, we use Python. 

Python 
Training and using prediction, we get the labels (Malik 2018). 

  

from sklearn.svm import LinearSVC
svcreg=LinearSVC(C=1000).fit(X,y)
pu=svcreg.predict(X)
pu

 

{1,0,1,0,0,1,1,0,1,1,1,0,0,0,1,1,1,0,0,1,0,0,0,0,1,0}⇐  
vP=%;⇒  

Error of Linear SVC of Python 

Norm[v-vP]⇒  
1⇐  

Error of  Mathematica 

Norm[v-vM]⇒  
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2⇐  
Now let us consider a linearly non-separable problem, see Fig. 2.35. 

2.4.2  Feature Space Mapping 

Creating the two sets, see Fig. 2.35. 
data1=RandomVariate[MultinormalDistribution[{0,0}, 

IdentityMatrix[2]], 500];

data2 =Transpose[

{#radius *Cos[#angle],#radius* Sin[#angle]}&@<|

"radius" RandomReal[{5, 8},500], 

"angle" RandomReal[{0, 2 P

⇒

→
→ i},500]|>];

totalset=Join[Map[# 1&,data1],Map[# 2&,data2]];→ →

 

Let us visualize them. 
p0=ListPlot[{data1,data2},PlotStyle {Blue,Red},

PlotMarkers {Automatic,Small},Frame True,AspectRatio 1]

⇒ →
→ → →  

⇐   
 Fig. 2.35 Nonlinear problem 
 
The total data set is divided into training and test sets. 
Length[totalset]⇒  
1000⇐  

⇒ SeedRandom[1234] 
trainingset=RandomSample[totalset,700];⇒  
testset=RandomSample[totalset,300];⇐  
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Mathematica 
Let us use RBF kernel. 
c2=Classify[trainingset, Method {"SupportVectorMachine", 

"KernelType" "RadialBasisFunction",

"GammaScalingParameter" 1},PerformanceGoal "Quality"]

⇒ →
→

→ →
 

⇐ ClassifierFunction
 

Computing the accuracy and the confusion matrix on the training set (Fig. 2.36) 
ctraining=ClassifierMeasurements[c2,trainingset]⇒  

⇒ ClassifierMeasurementsObject
 

ctraining["Accuracy"]⇒  
0.998571⇒  
ctraining["ConfusionMatrixPlot"]⇒  

⇐   
 Fig. 2.36 Confusion matrix for the training set 
 
Similarly for the test set (Fig. 2.37), 
ctest=ClassifierMeasurements[c2,testset]⇒  

⇒ ClassifierMeasurementsObject
 

ctest["Accuracy"]⇒  
1⇒  
ctest["ConfusionMatrixPlot"]⇒  
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⇐   
 Fig. 2.37 Confusion matrix for the test set 
 
Let us visualize the result of the classification, see Fig. 2.38. 
p2=Show[{DensityPlot[c2[{x,y}],{x,-8,8},{y,-9,9},

ColorFunction "CMYKColors",PlotPoints->50],p0},

AspectRatio 1.1]

⇒
→

→
 

⇐   
 Fig. 2.38 Result of SVC with RBF kernel 
 
Now we can solve the same problem with Python. 

Python 
Save the randomly generated data sets for Python, 
X=Map[#[[1]]&,totalset];⇒  
y=Map[#[[2]]&,totalset];⇒  
Export["G:\\dataX.txt",X];⇒  
Export["G:\\datay.txt",y];⇒  
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Read data from txt files 

  

X=[i for i in range(1000)]
f=open('G:\\dataX.txt','r')
for i in range(0,1000):
 X[i]=list(ast.literal_eval(f.readline()))

 

  

y=[i for i in range(1000)]
f=open('G:\\datay.txt','r')
for i in range(0,1000):
 y[i]=int(f.readline())

 

Splitting data set into training and test set, 

  

from sklearn.metrics import 
 accuracy_score,classification_report
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test =
 train_test_split(X,y,train_size = 0.7,random_state=42)

 

This is a general class of SVC supporting linear, polynomial and RBF kernels, 
not only the linear one (see earlier LinearSVC) (Ilango 2017). 

  

# RBF Kernel
from sklearn.svm import SVC
svm_rbf_fit = 
 SVC(kernel='rbf',C=1.0,gamma=0.1).fit(x_train,y_train)

 

Information about the training 

  

print ("\nSVM RBF Kernel Classifier - Train accuracy:",round
(accuracy_score(y_train,svm_rbf_fit.predict(x_train)),3))
print ("\nSVM RBF Kernel Classifier - Train 
 Classification Report\n",classification_report
  (y_train,svm_rbf_fit.predict(x_train)))

 

 
    SVM RBF Kernel Classifier - Train accuracy: 
    1 
 
    SVM RBF Kernel Classifier - Train Classification Report 
 
                 precision    recall  f1-score   support 
              1       1.00      1.00      1.00       350 
              2       1.00      1.00      1.00       350 
    avg / total       1.00      1.00      1.00       700 

 
Information about the test set 

  

print ("\nSVM RBF Classifier - Test accuracy:",round
 (accuracy_score(y_test,svm_rbf_fit.predict(x_test)),3))
print ("\nSVM RBF Classifier - Test Classification Report\n",
 classification_report(y_test,svm_rbf_fit.predict(x_test)))

 

 
    SVM RBF Kernel Classifier - Test accuracy: 
    1.0 
 
    SVM RBF Kernel Classifier - Test Classification Report 
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                 precision    recall  f1-score   support 
              1       1.00      1.00      1.00       150 
              2       1.00      1.00      1.00       150 
    avg / total       1.00      1.00      1.00       300 

2.4.3 Learning Chess Board Fields 

Let us consider a 2×2 chess board. The training points are generated by uniformly 
distributed random numbers from the interval [−1,1]×[−1, 1], see Fig. 2.39. 

M={{1,-1},{-1,1}};⇒  
p1=

Rotate[MatrixPlot[M,ColorRules {1 Black,-1 White}],Pi/2]

⇒
→ → →  

⇐   
 Fig. 2.39 The 2×2 chess board problem 
 
Creating the training set using 400 random samples, see Fig. 2.40. 
xym={};zm={};⇒

 

⇒ SeedRandom[2538] 
Do[x1=Random[Real,{-0.9995,0.9995}];

x2=Random[Real,{-0.9995,0.9995}];

If[x1 x2>0,z=1,z=-1];AppendTo[xym,{x1,x2}];

AppendTo[zm,z],{k,1,400}];

⇒

    Preparation of the data to display them

 

data=Transpose[Join[Transpose[xym],{zm}]];⇒  
data1=Map[Drop[#,-1]&,Select[data,#[[3]]>0&]];

data2=Map[Drop[#,-1]&,Select[data,#[[3]]<0&]];

⇒
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p2=ListPlot[{data1,data2},PlotMarkers {"\[FilledUpTriangle]",

"\[FilledRectangle]"},PlotStyle {Hue[.0],Hue[.7]},

Frame True,AspectRatio 1]

⇒ →
→

→ →
 

⇐   
 Fig. 2.40 The generated random points of the chess board problem 
 
Let us employ the same Gaussian (RBF) kernel with gain β = 20 

( ,  )  (  ( )( ))β= − − −K u v Exp u v u v  

=20;β⇒  
The training data 
trainingData=MapThread[#1 #2&,{xym,zm}];⇒ →  

Mathematica 
Then the training the classifier, 
ChessSVC=Classify[trainingData,Method {"SupportVectorMachine", 

"KernelType" "RadialBasisFunction",

"GammaScalingParameter" },PerformanceGoal "Quality"]β

⇒ →
→

→ →
 

⇐ ClassifierFunction
 

Testing the classifier on the training set (Fig. 2.41) 
ctesting=ClassifierMeasurements[ChessSVC,trainingData]⇒  
ClassifierMeasurementsObject[⇐

  
ctesting["Accuracy"]⇒  
1.⇐

 

ctesting["ConfusionMatrixPlot"]⇒  
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⇐   
 Fig. 2.41 The confusion matrix on the testing set 
 

Now let us visualize the solution. The zero contour lines represent the 
boundary of the clusters, see Fig. 2.42 
p4=DensityPlot[-Sign[ChessSVC[{u,v}]],{u,-1,1},{v,-1,1},

PlotPoints 100,ColorFunction GrayLevel,Mesh False,

Axes True,AxesStyle {{Green,Thick},{Green,Thick}}];

⇒
→ → →

→ →
 

Show[{p4,p2}]⇐

 

⇐   
 Fig. 2.42 The solution of the chess board problem 
 
Saving data for Python 
dataX=xym;⇒  
dataX=xym;⇒  
Export["dataX.mtx",dataX];⇒  
Export["datay.mtx",{datay}];⇒  

Python 

  
# RBF Kernel
from sklearn.svm import SVC  
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from numpy import array, matrix
from scipy.io import mmread, mmwrite  

  
dataX=mmread('dataX.mtx')
datay=mmread('datay.mtx') 

  
datay=datay[0] 

  
svm_rbf_fit = SVC(kernel='rbf',C=100.0,gamma=20.).
 fit(dataX,datay)  

  
print("Training set score:
 {:.2f}".format(svm_rbf_fit.score(dataX, datay))) 
Training set score: 1.00 

Let us see the error (mislabeling) if there is any 

  
prediction=svm_rbf_fit.predict(dataX)
prediction  

{1,1,-1,1,1,-1,1,-1,1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,-1,-1,

-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,-1,-1,1,1,1,-1,1,-1,-1,-1,-1,

-1,-1,1,-1,1,1,1,1,-1,1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,

1,1,1,1,-1,-1,1,1,-1,-1,-1

⇐

,1,-1,1,1,-1,1,-1,-1,1,1,1,-1,

1,-1,-1,1,-1,-1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,1,1,

....

-1,-1,1,1,-1,1,1,-1,-1,1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,

-1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1}
 

yP=%;⇒  
Norm[Flatten[datay]-yP]⇒  
0⇐  

2.5 Naive Bayes Classifier 

Basic Theory 

Bayes theorem provides a way of calculating posterior probability  ( | )P c x  from 
P(c), P(x) and  ( | )P x c  (James et al. 2013). Look at the equation below: 

( ) ( )
( )

|
 ( | ) =

P x c P c
P c x

P x
 

 ( | )P c x  is the posterior probability of class (c, target) given predictor (x, 
attributes). 

 ( )P c  is the prior probability of class. 
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 ( | )P x c  is the likelihood which is the probability of predictor given class. 
 ( )P x  is the prior probability of predictor. 

Explanatory Example 

Will John play tennis or not, when the weather is Sunny? 

2.5.1 Playing Tennis Today? 

The computation can be followed considering Tables 2.5 a, b and c which can be 
used to calculate the probability of playing on a sunny day. 
 
 
 

Tables 2.5 a, b and c for the computation of the probability of playing on a sunny day 

Weather Play           
Sunny No  Frequency table  Likelihood table   
Overcast Yes  Weather No Yes  Weather No Yes   
Rainy Yes  Overcast  4  Overcast  4 =4/14 0.29 
Sunny Yes  Rainy 3 2  Rainy 3 2 =5/14 0.36 
Sunny Yes  Sunny 2 3  Sunny 2 3 =5/14 0.36 
Overcast Yes  Grand Tota  5 9  All 5 9   
Rainy No       =5/14 =9/14   
Rainy No       0.36 0.64   
Sunny Yes           
Rainy Yes           
Sunny No           
Overcast Yes           
Overcast Yes           
Rainy No           

 
Feature → Weather: Sunny, Rainy, Overcast  
Classes → No, Yes 

Step 1: Convert data set into Frequency table 
Step 2: Create Likelihood table 
Step 3: Now, use Naive Bayesian equation to calculate the posterior probability 

for each class. The class with the highest posterior probability is the 
outcome of prediction, for example, 

What is the probability that they will play on a sunny day? 
P(Yes|Sunny) = P(Sunny|Yes)×(Yes)/P(Sunny) = ? 

P(Sunny|Yes) = 3/9= 0.33 - they played 9 times and 3 of these days were sunny 
P(Sunny) = 5/14 = 0.36 - there were 5 sunny days from the total 14 days 
P(Yes) = 9/14 = 0.64 they played 9 times during the 14 days 
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then  
P(Yes|Sunny) = 0.33×0.64/0.36 = 0.60 

Let us employ Mathematica to solve the problem. 

Mathematica 
dataTraining={"Sunny" "No","Overcast" "Yes","Rainy" "Yes",

"Sunny" "Yes","Sunny" "Yes","Overcast" "Yes",

"Rainy" "No","Rainy" "No","Sunny" "Yes","Rainy" "Yes",

"Sunny" "No","Overcast" "Yes","Overcast" "

⇒ → → →
→ → →
→ → → →
→ → → Yes",

"Rainy" "No"};→

 

TableForm[dataTraining,TableAlignments {Left,Center}]⇒ →  
Sunny No

Overcast Yes

Rainy Yes

Sunny Yes

Sunny Yes

Overcast Yes

Rainy No

Rainy No

Sunny Yes

Rainy Yes

Sunny No

Overcast Yes

Overcast Yes

Rainy No

⇐ →
→

→
→
→

→
→
→
→
→
→

→
→

→

 

Training the classifier 
c=Classify[dataTraining,Method {"NaiveBayes"},

PerformanceGoal "Quality"]

⇒ →
→  

⇐ ClassifierFunction
 

Give our data as input for the classifier, 

c[{"Sunny"}]⇒  
{Yes}⇐

 
Out of Yes or No, we can get the probabilities, too 
c[{"Sunny"},"TopProbabilities"]⇒  
{{Yes 0.58296,No 0.41704}}⇐ → →

 
Testing the classifier (Fig. 2.43) 
cm=ClassifierMeasurements[c,dataTraining]⇒  

⇐ ClassifierMeasurementsObject
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cm["Accuracy"]⇒  
0.714286⇐

 

ctesting["ConfusionMatrixPlot"]⇒  

⇐   
 Fig. 2.43 Confusion matrix of the training set 
 
Error, misclassified data are 4, indeed (1, 3, 10, 11). 

Computed labels 
Map[c[#[[1]]]&,dataTraining]⇒  
{Yes,Yes,No,Yes,Yes,Yes,No,No,Yes,No,Yes,Yes,Yes,No}⇐

 
Original labels 
Map[#[[2]]&,dataTraining]⇒  
{No,Yes,Yes,Yes,Yes,Yes,No,No,Yes,Yes,No,Yes,Yes,No}⇐

 
Python 
In order to solve the problem with Python, we transform the dataset from nominal 
values into numerical ones 
dataX=Map[#[[1]]&,dataTraining]/.

{"Sunny" 0,"Overcast" 1,"Rainy" 2}

⇒
→ → →  

{0,1,2,0,0,1,2,2,0,2,0,1,1,2}⇐

 

datay=Map[#[[2]]&,dataTraining]/.{"Yes" 1,"No" 0}⇒ → →  
{0,1,1,1,1,1,0,0,1,1,0,1,1,0}⇐

   
import numpy as np  

Then the input and output data 

  
X=np.array
 ([[0],[1],[2],[0],[0],[1],[2],[2],[0],[2],[0],[1],[1],[2]]) 

  
y=np.array([0,1,1,1,1,1,0,0,1,1,0,1,1,0]) 

Loading classifier 

130 2  Classification



 

  
from sklearn.naive_bayes import GaussianNB  

Training classifier (Sunil 2017) 

  
clf=GaussianNB().fit(X,y) 

In our case: Input: Sunny→0 

  
prediction=clf.predict(0)
prediction  

1⇐

 
Output is: 1→Play. 

The probabilities are, 

  
prediction=clf.predict_proba(0)
prediction  

{{0.290031,0.709969}}⇐

 
2.5.2 Zebra, Gorilla, Horse and Penguin 

Let us consider images of animals, see Fig. 2.44 

⇒   zebra=     { , , , , }; 

⇒   gorilla= { , , , , }; 

⇒   penguin= { , , , , }; 

⇒   hourse= { , , , , 

             }; 
Fig. 2.44 A collection of images of different animals 

We have four classes. 
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Mathematica 
animals=Join[zebra,gorilla,penguin,hourse];⇒  
trainingSet=MapThread[#1 #2&,

{animals,{Z,Z,Z,Z,Z,G,G,G,G,G,P,P,P,P,P,H,H,H,H,H}}];

⇐ →
 

Now, we employ GPU, 
c=Classify[trainingSet,Method "NaiveBayes" ,

PerformanceGoal "Quality",TargetDevice "GPU"]

⇒ →
→ →  

ClassifierFunction[⇐

 
 

ClassifierInformation[c]⇒  
The accuracy of the classification is 
ctesting = ClassifierMeasurements[c, trainingSet]⇒  
ClassifierMeasurementsObject[⇐

 
 

ctesting["Accuracy"]⇒  
1.⇐  

The confusion matrix is on the training set (Fig. 2.45) 
ctesting["ConfusionMatrixPlot"]⇒  

⇐   
 Fig. 2.45 The confusion matrix 
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Let us test our classifier with images, see Fig. 2.46 

imgNew01=⇒ ; imgNew01= ; 

            imgNew03= ; 
 Fig. 2.46 Test images 
 
c[imgNew01, "Probabilities"]⇒  

-287<|G 2.68033*10 ,H 0.,P 1.,Z 0.|>→ → → →⇐  
c[imgNew02, "Probabilities"]⇒  

-141 -116 -142<|G 4.24751*10 ,H 3.00681*10 ,P 1.,Z 5.07884*10 |>→ → →⇐ →  
c[imgNew03, "Probabilities"]⇒  

-119 -95 -162<|G 9.40641*10 ,H 1.,P 3.53518*10 ,Z 8.81794*10 |>→⇐ → → →  
The pelican is an odd-one-out of classes and similar to the penguin class. The 

horse with star dress is recognized as hours. 

Python 
In order to employ Python, we need image preprocessing. We shall employ the 
vector to represent the feature of an image. Therefore we need to reduce the 
dimensions of the images (Hsu et al. 2017). 
animalsReduced=Map[ImageResize[#,{256,256}]&,animals];⇒  
dataX= DimensionReduce[animalsReduced, Method "TSNE",

PerformanceGoal "Quality"];

⇒ →
→  

the classes are Z,G,P,H→{0,1,2,3} 
datay={{0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3}};⇒  

Data for Python 
Export["dataX.mtx",dataX];⇒  
Export["datay.mtx",datay];⇒  

  
from numpy import array, matrix
from scipy.io import mmread, mmwrite  
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dataX=mmread('dataX.mtx')
datay=mmread('datay.mtx') 

datay=datay[0] 

  
from sklearn.naive_bayes import GaussianNB
clf=GaussianNB().fit(dataX,datay)

print("Training set score: 
 {:.2f}".format(clf.score(dataX, datay)))

Training set score: 1 .00⇐  
Let us see the error (mislabeling) if there is any 

  
prediction=clf.predict(dataX)
prediction  

{0,0,0,0,0,1,1,1,1,1,2,2,2,2,2,3,3,3,3,3}⇐  
yP=%;⇒

Norm[Flatten[datay]-yP]⇒

0⇐

Now we check the test images. 
{t1,t2,t3} = Map[ImageResize[#,{256,256}]&,

{imgNew01,imgNew02,imgNew03}];

⇒

testXT = DimensionReduce[{t1,t2,t3},Method "TSNE",

PerformanceGoal "Quality"];

⇒ →
→

Export["testXTk.mtx",testXT];⇒

testXT=mmread('testXTk.mtx') 

  
prediction=clf.predict(testXT)
prediction  

{3,3,3}⇐  

2.6 Fisher Discriminant 

What is the significance of Fisher linear discriminants for classification problems? 
Fisher’s linear discriminant can be used as a supervised learning classifier. 

Given labeled data, the classifier can find a set of weights to draw a decision 
boundary, thereby classifying the data. Fisher’s linear discriminant attempts to 
find the vector that maximizes the separation between classes of the projected data 
similar to the support vector machine (SVM) method. 

This technique introduced here was published by Murrell et al. (2011). 
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2.6.1 Linear Fisher Discriminant 

We follow Mika et al. (1999) in our construction of a Fisher linear discriminant 
as the vector ω  that maximizes: 

( )
T

B
T

W

SJ
S

ω ω
ω

ω ω
= , 

where the between-class and within-class scatter matrices are defined by: 

( )( ) ( )( )andT T
B c c c W i c i c

c c i c

S N S x xµ µ µ µ µ µ
∈

= − − = − −∑ ∑∑ , 

where µ is the mean of the xi and µc is the mean of the xi within class c. 
To understand the meaning of a scatter matrix, we need a test dataset (Fig. 

2.47); the usual choice is two sets of normally distributed points with elliptical 
shapes. The two elliptical sets are rotated and translated away from each other and 
then adjusted to have zero combined mean. These commands generate two 
elliptical datasets. The positive (blue) and negative (purple) datasets are used for 
training a Fisher discriminant. 

⇒ llipsePoint[]:=Module[{},t=RandomReal[{0,Pi}];

r=RandomReal[NormalDistribution[0,0.5]];

{2 r Cos[t],r Sin[t]}];

Xn=Table[EllipsePoint[]-{1,1},{1000}];

rm=RotationMatrix[Pi/3];

Xp=Table[rm.EllipsePoint[]+

E

→
→ →

{1,1},{1000}];

mu=Mean[Join[Xn,Xp]];

Xn=Map[#-mu&,Xn];

Xp=Map[#-mu&,Xp];

X=Join[Xn,Xp];

ListPlot[{Xn,Xp},PlotStyle PointSize[0.01],

PlotRange {{-5,5},{-5,5}},AspectRatio 1]
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⇐   
 Fig. 2.47 The data points to be classified 
 
Now we can compute the between-class and within-class scatter matrices for these 
two-dimensional datasets and plot their action on a potential projection 
discriminant. The Fisher linear discriminant is the vector that maximizes the 
scatter ratio and the Fisher separating plane is perpendicular to the Fisher 
discriminant. These commands generate scatter matrices and plot their action on 
all unit vectors. 

⇒ Mv[v_]:=Outer[Times,v,v];

Action[m_,v_]:=(2/Length[X]) v.m.v;

u[t_]:={Cos[t],Sin[t]};

Sb=Length[Xn] Mv[Mean[Xn]-Mean[X]]+Length[Xp] Mv[Mean[Xp]-Mean[X]];

Sw=Apply[Plus,Map[Mv,Map[#-Mean[Xn]&,Xn]]]+Apply[Plus,

Map[Mv,Map[#-Mean[Xp]&,Xp]]];

PolarPoints[m_]:=Table[Action[m,u[t]] u[t],{t,0,2 Pi,0.01}];

SbPoints=Table[Action[Sb,u[t]] u[t],{t,0,2 Pi,0.01}];

SwPoints=Table[Action[Sw,u[t]] u[t],{t,0,2 Pi,0.01}];

SrPoints=Table[(Action[Sb,u[t]]/Action[Sw,u[t]]) u[t],

{t,0,2 Pi,0.01}];

{mr,mt}=FindMaximum[Action[Sb,u[theta]]/Action[Sw,u[theta]],

{theta,0}];

mt=theta/.mt;

BestProjector=Table[r u[mt],{r,-2 mr,2 mr,0.0

→
→ →

1}];

BestSeparator=Table[r u[mt+Pi/2],{r,-2 mr,2 mr,0.01}];

ListPlot[{Xn,Xp,SbPoints,SwPoints,SrPoints,BestProjector,

BestSeparator},PlotStyle PointSize[0.006],

PlotRange {{-5,5},{-5,5}},AspectRatio 1]//

Quiet
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This script is for generating scatter matrices and plotting their action on all unit 
vectors (Fig. 2.48). 
 

⇐   
 Fig. 2.48 The generating scatter matrices and their action on all unit vectors 
 

Curves show the action of the scatter matrices on unit vectors. The brown line 
is the Fisher projection vector, and the blue line is the Fisher linear discriminator. 

2.6.2 Fisher Discriminant with Kernel 

Often, in the real world, a linear discriminant is not complex enough to separate 
datasets effectively. To deal with nonlinear separations, we consider a mapping Φ 
from sample space X into a feature space F. Assuming that the Fisher linear 
discriminant w in F can be expressed as a linear combination of sample points in 
F, we require: 

( )
1

l

i i
i

w xαΦ
=

= ∑  

In terms of α, the objective function J(α) now reads 

( )
T

B
T

W

SJ
S

Φ

Φ

α α
α

α α
=  
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The between-class scatter is now given by: 

( )( ) ( ) ( ) ( )1 2 1 2
1

1with ,
ilT i

B i j kj
ki

S M M M M M x x
l

Φ Φ Φ
=

= − − = < >∑ ,

where Mi is a vector of length 1 2l l l= +  and ( ) ( ),j kx xΦ Φ< >  represents the 
inner product between data points in the new feature space F. 

The within-class scatter is given by: 

( ) ( ) ( ) ( )1 21 1 2 21 1 with ,T T i
W l l i j kS K I K K I K K x xΦ Φ Φ = − + − = < >  ,

where 1li is an identity matrix with all entries set to 1/1li and Ki is a matrix of inner 
products in feature space of dimensions il l× . Derivations for BSΦ  and WSΦ  can be 
found i.e. in Mika (2002), but the important point to note is that the vector notation 
now applies in the space spanned by the data vectors in Rl and an explicit form for 
Φ is not required. The scatter matrices can be computed through the inner products 

( ) ( ),jk j kK x xΦ Φ=< > , and a new test data point x from X can be projected onto 

ω in F (for future classification) via the computation 

( ) ( ) ( )
1

, , .
l

i i
i

w x x xΦ α Φ Φ
=

< >= < >∑  

The iα  projection coefficients are computed from training sets by maximizing 
J(α). However, the scatter matrices now have dimensions il l× , so the naive 
technique employed in the 2 2×  case of the previous section will not work. To 
maximize J(α), we must now find the leading eigenvector of 

( ) 1

W BA S I SΦ Φλ
−

= + , 

2.6.3 Using Polynomial Kernel 

In many pattern-recognition problems, the training data requires a nonlinear 
separating surface. For each specific problem, we could devise some appropriate 
transformation Φ(x) from input space X (the domain of the original data) to feature 
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where I is a regularizing diagonal term introduced to improve the numerical 

stability of the inverse computation, see Mika (2002) for details. 

Fisher discrimination is now cast into a setting whereby the nature of the 

classification (linear or nonlinear) is entirely governed through the specification 

of      , ,K x y x y   . The mapping :K X X R   is called the kernel 

and can be constructed to suit the problem at hand without specifying . 



 

space F. The function Φ must be chosen so that a hyperplane in F corresponds to 
some desirable class of surfaces in X. How does the analyst choose Φ? The Fisher 
formulation in the previous section tells us that we need not construct Φ explicitly, 
but only require an inner product or kernel, ( ),i jK x x . The traditional inner 

product given by ( ), .i j i jK x x x x=  delivers the linear Fisher discriminant. If X 
itself happens to be a dot product space, then two popular nonlinear kernels are 
the degree-d polynomial ( ) ( ), 1 .

d

i j i jK x x x x= +  and the radial basis function 

( ) ( ) ( )., i j i jx x x x
i jK x x e γ− − −= . 

Let us solve a nonlinear classification problem. We use the polar shapes, a 
folium and an astroid, to construct two classes of observations. Each observation 
is characterized by a two-dimensional feature vector and a class assignment. The 
classes have been selected so that they are not linearly trainable, but may be 
trainable via a nonlinear kernel. In all the plots that follow, the positive samples 
are in blue while the negative samples are rendered in yellow (Fig. 2.49). 

The third-party package for computing Fisher discriminant is here employed: 
⇒ Needs["MathKFD`"];

?TrainKFD  

⇐
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⇒ FoliumPoint[]:=Module[{t,r},t=(2 RandomInteger[]-1) 

RandomReal[NormalDistribution[Pi/4,0.2]];

r=RandomReal[NormalDistribution[0.5,0.2]] 

(4 Cos[t] Sin[t] Sin[t]);{r Cos[t],r Sin[t]}];

AstroidPoint[]:=Module[{t,r},

t=RandomReal[UniformDistribution[{0,2 Pi}]];

r=RandomReal[NormalDistribution[0.0,0.2]];

{r Sin[t] Abs[Sin[t]],r Cos[t] Abs[Cos[t]]}];

n=500;

rm=RotationMatrix[-Pi/4];

X=Join[Table[FoliumPoint[].rm,{n/2}],

Table[(AstroidPoint[]+{1,0}).rm,{n/2}]];

y=Join[Table[1,{n/2}],Table[-1,{n/2}]];

XTest=Join[Table[FoliumPoint[].rm,{n/2}],

Table[(AstroidPoint[]+{1,0}).rm,{n/2}]];

yTest=Join[Table[1,{n/2}],Table[-1,{n/2}]];

DataPlotKFD[X,y,XTest,yTest]

 

 

⇐  
 Fig. 2.49 Training and testing data set 
 
The task at hand is then to construct a Fisher discriminant from the training set 
and use it to classify the test set. We select a nonlinear kernel and train a kernelized 
Fisher discriminant. Then, because our data originated in R2, we are able to view 
the Fisher discriminating curve. 

α β
α β

⇒ kf=PolynomialKernel[#1,#2,3]&;

{ , }=TrainKFD[kf,X,y];

ContourPlotKFD[kf,X,y, , ,XTest,yTest]
 

The training and testing set are recomputed, now blue and purple, respectively 
(see Fig. 2.50). 
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⇐  
 Fig. 2.50 Training and testing data set with the Fisher discriminating curve 
 
In general, our datasets are not in R2 and we will not be able to view separation 
boundaries in sample space. However, we can always view the performance of the 
classifier by generating a histogram of projections onto the Fisher discriminator 
in feature space. We can provide a bar chart function showing Fisher classification 
histograms on a testing dataset (see Fig. 2.51). The Mahalonobis classification 
boundary is marked with an up arrow. In addition to the histograms reports on the 
number of features per sample, the kernel used, the number of positive and 
negative samples in the training and testing data, and three simple success 
statistics achieved by the classification is presented. Sensitivity measures the 
classification success rate for positive test samples, specificity measures the 
success rate for negative test samples, and accuracy measures the success rate for 
all test samples. 
 

α β⇒ BarChartKFD[kf,X,y, , ,XTest,yTest,"KDF Classification"] 
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⇐   
Fig. 2.51 Histogram of the data distributions projected onto the Fisher discriminant feature 

space 

2.6.4 Using Kernels in R3 

In the following nonlinear example, first we employed a polynomial kernel of 
degree 16 to find a reasonable separating surface for the training data (see Fig. 
2.52). However, one or two of the positive samples are still classified negative. 

The following commands generate two classes of data in 3D that are separable 
via a polynomial surface. The positive class is a normal distribution about the 
origin and shifted up the y axis. The negative class is a quadratic in the x-y plane 
with each point rotated randomly about the y axis. The data is generated, and a 
Fisher discriminant is trained and plotted together with the training data in 3D. 
 

⇒

2

Xn=Table [RandomReal[NormalDistribution[i/

len=500;

Xp=Map[#+{0,0.1,0}&, RandomReal[No

len-1/4,0.02]],

RandomReal[NormalDistributi

rmalDistribution[0,0.0

on[(2i/len-1/2)-1/6,

3],

{len/2,

0.01]],0}.

3}]];

{

Rotat

α β
α β

{ { {

X=Join[Xp,Xn];

y=Join[Table[1,{len/2}],Table[-1,{len/2}]];

kf=PolynomialKernel[#1,#2,16]&;

{ , }=Train

ionMatrix[RandomReal[ 0,2Pi}

KFD[kf,X,y];

ContourPlot3DKF

], 0,1,0}], i,len

D[kf,X,y

/2

, , ,

}];

X,y]
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⇐   
Fig. 2.52 Nonlinear classification with Fisher discriminant using polynomial kernel of degree 

16. The position of the pink points and blue points as well as the decision surface position 
indicate the optimal separation 

 
The same data is used to train and display a radial basis discriminant (Fig. 

2.53). The radial basis kernel with parameter γ = 2 performs much better, 
separating the training set completely. 

α β
α β

⇒ kf=RBFKernel[#1,#2,2]&;

{ , }=TrainKFD[kf,X,y];

ContourPlot3DKFD[kf,X,y, , ,X,y]
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⇐

Fig. 2.53 Nonlinear classification with Fisher discriminant using radial basis kernel 

⇒ Modernism={
, ,

, , ,
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2.7 Comparison of Classification Methods 

We considered here four painting styles: modernism, impressionism, abstract and 

surrealism (see Figs. 2.54, 2.55, 2.56 and 2.57), respectively. There are 15-15 

images of all classes, and 10-10 randomly selected images from each class are 

used as training set, the total set is used to test the created classifiers. Five 

classifying methods are considered and compared on the bases of the running time 

of teaching and of the quality of their performance on the testing set. 

Even for a human being, it is not an easy task, but some of the machine 

learning algorithms can perform quite well. 



 

, , , ,

, , ,

, , }; 

 Fig. 2.54 15 collection of modernism type paintings 

 

⇒ Impressionism={
, ,

, , , ,

, , ,
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, , ,

, , }; 

 Fig. 2.55 15 collection of impressionism type paintings 

 

⇒ Abstract={ , , ,

, , ,

, , ,
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, , , ,

, }; 

 Fig. 2.56 15 collection of abstract type paintings 

 

⇒ Surrealism={ , ,

, , ,

, , , ,
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, , ,

, , }; 

 Fig. 2.57 15 collection of surrealism type paintings 

 

Preparation of the training set, 
⇒ s=Table[Table[i,{i,1,4}],{j,1,10}]//Transpose//Join//Flatten  
⇐ {1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,

3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4}
 

⇒ v=Map[RandomSample[#,10]&,

{Modernism,Impressionism,Abstract,Surrealism}]//Flatten; 
⇒ →data=MapThread[#1 #2&,{v,s}]; 

Classification process, 
⇒ →AbsoluteTiming[c=Classify[data,Method "LogisticRegression"]] 
⇐ {9.71596,ClassifierFunction

 
Preparing the test set, 

⇒ s=Table[Table[i,{i,1,4}],{j,1,15}]//Transpose//Join//Flatten  
⇐ {1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}
 

⇒ v=Join[{Modernism,Impressionism,Abstract,Surrealism}]//Flatten; 
⇒ →dataTotal=MapThread[#1 #2&,{v,s}]; 

Testing process, 
⇒ cm = ClassifierMeasurements[c, dataTotal] 
⇐ ClassifierMeasurementsObject

 
The accuracy of the classifying function on the total dataset (Fig. 2.58)  

⇒ cm["Accuracy"] 
⇐ 0.9  

Confusion matrix, 
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⇒ cm["ConfusionMatrixPlot"] 

⇐   

 Fig. 2.58 Confusion matrix of the classification function on the total dataset 
 

Probability of the membership of a single object randomly selected from the 
test set (Fig. 2.59), 

⇒ p=RandomSample[Modernism,1] 

⇐   

 Fig. 2.59 Randomly selected painting from the modernism collection 
 
⇒ Map[c[p,{"Probability",#}]&,{1,2,3,4}]//Flatten  
⇐ {0.758568,0.0887136,0.100931,0.0517867}

 
The result is the probability value of the membership function of the different 

collections. 

Table 2.6 shows the result of the different methods on the test set, 
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Table 2.6 Comparison of Classification Methods 

 
 
 
 
 
 
 

We can see that the performances of the Logistic regression and Support 
Vector Classification are the best however their running time of the training 
process is somewhat longer. 
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Chapter 3 
Clustering 
 
 
 
 
 
 
 
 
 
 
 
Clustering refers to algorithms to uncover clusters in unlabeled data. Data points 
belonging to the same cluster exhibit similar features, whereas data points from 
different clusters are dissimilar to each other. The identification of such clusters 
leads to segmentation of data points into a number of distinct groups. Since groups 
are identified from the data itself, as opposed to classification, clustering is 
considered as unsupervised learning. 

Relatively homogenous data points belonging to the same cluster can be 
summarized by a single cluster representative, and this enables data reduction. 
Clustering can also be used to identify unusual observations distinct from other 
clusters, such as outliers and noises. The most important techniques are 
demonstrated by Python as well as Mathematica codes, respectively. 

3.1  KMeans Clustering 

Basic Theory 

The goal of unsupervised learning is to discover the hidden patterns or structures 
of the data in which no target variable exists to perform either classification or 
regression methods. Unsupervised learning methods are often more challenging, 
as the outcomes are subjective and there is no simple goal for the analysis, such 
as predicting the class or continuous variable. These methods are performed as 
part of exploratory data analysis. In addition, since there is no universally accepted 
mechanism for performing the validation of the results, assessing the results 
obtained from unsupervised learning methods can be hard (Han et al. 2012). 
Nevertheless, unsupervised learning methods are nowadays growing in 
importance in various fields as evidenced by many researchers currently actively 
working on the subject. 

The K-Means clustering algorithm is an iterative process of moving the centers 
of clusters or centroids to the mean position of their constituent points, and 
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reassigning instances to their closest clusters iteratively until there is no significant 
change in the number of cluster centers possible or number of iterations reached. 
Prototype-based clustering means that each cluster is represented by a prototype, 
which can either be the centroid (average) of similar points with continuous 
features, or the medoids (the most representative or most frequently occurring 
point) in the case of categorical features. While K-Means is very good at 
identifying clusters with a spherical shape, one of the drawbacks of this clustering 
algorithm is that one has to specify the number of clusters, K, a priori. An 
inappropriate choice of K can result in poor clustering performance. Later on in 
this chapter, the silhouette method for computing silhouette coefficient as 
indicator for outliers, which are useful techniques to evaluate the quality of a 
clustering to help in determining the optimal number of clusters K will be 
discussed (Vanderplas 2016). 

A problem with the K-Means is that one or more clusters can be empty. Note 
that this problem does not exist for K-Medoids or Fuzzy C-means. This method 
can be employed when there are very many samples, not too many clusters and 
the geometry of the elements are flat, which basically means that the cluster can 
be easily separated. When applying K-Means to real-world data using  Euclidean 
distance metric, the motivation is to make sure that the features are measured on 
the same scale and standardization or min-max scaling if necessary (Standardize 
in Python). In short, K-Means can be useful in case of many samples and few 
cluster and flat geometry. 

3.1.1  Small Data Set 

Simple introductory example employing a small data set from Python depository, 
see Fig. 3.1. 

Python 
Starting Python session in Mathematica, 

⇒
→

→ →

session=

StartExternalSession[<|"System" "Python",

"Version" "3.5.4","Executable"

"C:\Users\Ben\AppData\Local\Programs\Python\Python35\

python.exe"|>]//Quiet

 

⇐ ExternalSessionObject[  

 
Reading the necessary procedures, 
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from numpy import array, matrix
from scipy.io import mmread, mmwrite
import numpy as np

 

Importing K-Means clustering function. 

  
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans  

Reading data set and clustering in case of supposing three clusters, 

  

X, y = make_blobs(random_state=1)
kmeans = KMeans(n_clusters=3).fit(X)
pre= kmeans.predict(X)
pred=np.array([pre])

 

Write data and the resulted labels into files for Mathematica. 

  
mmwrite('labels.mtx',pred)
mmwrite('dataX',X)

 

The center coordinates of the clusters, 

  
cent= kmeans.cluster_centers_
cent

 

{{-6.58197,-8.17239},{-1.47108,4.33722},{-10.0494,-3.85954}}⇐  

Reading Python results into Mathematica for visualization see Fig. 3.1. 

centers=%;⇒  
labels=Import["labels.mtx"]//Flatten;⇒  
datap=Import["dataX.mtx"];⇒  
p0=ListPlot[datap,

Frame True,PlotMarkers "\[DifferenceDelta]",Axes None]

⇒
→ → →  

⇐

  
Fig. 3.1 Data points for clustering 

Computing the elements belonging to the different clusters, 
dataC=MapThread[Flatten[{#1,#2}]&,{datap,labels}];⇒  
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⇒ dataC1=Map[Most,Select[dataC,#[[3]]==0&]]; 
⇒ dataC2=Map[Most,Select[dataC,#[[3]]==1&]]; 
⇒ dataC3=Map[Most,Select[dataC,#[[3]]==2&]]; 

Visualizing different clusters with their centers, see Fig. 3.2, 
Show[{p0,ListPlot[{dataC1,dataC2,dataC3},Frame True,

PlotMarkers Automatic,Axes None],

ListPlot[centers,PlotMarkers " ",

PlotStyle {Black,Large}]},AspectRatio 0.7]

⇒ →
→ →

→
→ →

♠  

⇐

  
Fig. 3.2 The result of the clustering with the centers of the clusters employing Python 

The clustering performance can be evaluated by computing the silhouette 
coefficient, 

( ) / max( , )s b a a b= − . 

where a is the mean distance between a sample and all other points in the same 
clusters, and b is the mean distance between a sample and all the other points of 
the nearest cluster. Python has a built in function. 

  
from sklearn import metrics
s=metrics.silhouette_score(X,prediction,'euclidean')
s

 

0.769709⇐  
A more detailed explanation about silhouette coefficient, see Chap. 6, Sect. 3. 
Now let us employ Mathematica for computing the clusters. 

Mathematica 
Again assuming three clusters, 
clusters=FindClusters[datap,3,Method "KMeans",

PerformanceGoal "Quality"];

⇒ →
→  
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The centers of the clusters are, 
centers=Map[Mean[#]&,clusters]⇒  
{{-1.47108,4.33722},{-10.0494,-3.85954},{-6.58197,-8.17239}}[⇐  

Let us visualize the clusters and their centers, see Fig. 3.3. 
Show[{p0,ListPlot[clusters,Frame True,

PlotMarkers Automatic,Axes None],ListPlot[centers,

PlotMarkers " ",PlotStyle {Black,Large}]},

AspectRatio 0.7]

⇒ →
→ →
→ →
→

♠  

⇐

  
Fig. 3.3 The result of the clustering with the centers of the clusters using Mathematica 

A more sophisticated method can be employed to find the boundary of the 
different clusters. We can define a clustering function, like 
clustersF=ClusterClassify[datap,3,Method "KMeans",

PerformanceGoal "Quality"]

⇒ →
→  

⇐ ClassifierFunction
 

Let us test it in two points (−6, −8) and (−5, −1). The first point with 
probability 1 belongs to the first cluster, 
clustersF[{-6,-8},"Probabilities"]//Normal⇒  

36 101 1.,2 3.92839 10 ,3 4.92 7 1 [36 0− −⇐ → → × → ×  

while the second point belongs partly to the first (0.31) and partly to the second 
(0.67) cluster. These probabilities can be considered as membership function 
values. 
clustersF[{-5,-1},"Probabilities"]//Normal⇒  
{1 0.305066,2 0.665971,3 0.0289628}[⇐ → → →  

Let us visualize the cluster regions, see Fig. 3.4 

  3.1  KMeans Clustering 155



 

pD=DensityPlot[clustersF[{x,y}],{x,-12,2},{y,-12,7},

PlotPoints 100];

⇒
→

 

Show[{pD,p0,ListPlot[clusters,Frame True,

PlotMarkers Automatic,Axes None],

ListPlot[centers,PlotMarkers " ",PlotStyle {Black,Large}]},

AspectRatio 0.7]

⇒ →
→ →

→ →
→

♠  

⇐

  
Fig. 3.4 The result of the clustering with the boundary of the cluster 

Figure 3.4 shows that the problem is linearly separable one. There is only one 
element with membership (1/3,1/3,1/3) in the common vertex of the three regions. 

In order to compute the silhouette coefficient for the Mathematica's result, we 
save its labels in a file, 
index=Map[#-1&,ClusteringComponents[datap,3,1,Method "KMeans",

PerformanceGoal "Quality"]]

⇒ →
→  

{0,1,1,1,2,2,2,1,0,0,1,1,2,0,2,2,2,0,1,1,2,1,2,0,1,

2,2,0,0,2,0,0,2,0,1,2,1,1,1,2,2,1,0,1,1,2,0,0,0,0,

1,2,2,2,0,2,1,1,0,0,1,2,2,1,1,2,0,2,0,1,1,1,2,0,0,

1,2,2,0,1,0,1,1,2,0,0,0,0,1,0,2,0,0,1,1,2,2,0,2,

⇐

0}

 

Export["pred.mtx",{index}]⇒  
pred.mtx⇐  

and read in into Python, 

  
index=mmread('pred.mtx') 

Then we can employ the built-in function of Python, 

  

ind=index[0]
from sklearn import metrics
s=metrics.silhouette_score(X,ind,'euclidean')
s

 

0.769709⇐  
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It means that Python and Mathematica provided the same quality for clustering in 
case of three clusters. 

No let us try to carry out the clustering with five clusters. 
clusters=FindClusters[datap,5,Method "KMeans",

PerformanceGoal "Quality"];

⇒ →
→  

The centers of the clusters, 
centers=Map[Mean[#]&,clusters]⇒  
{{-1.47108,4.33722},{-9.8649,-4.74746},{-11.0221,-3.37753},

{-9.3663,-3.32909},{-6.58197,-8.17239}}

⇐  

Figure 3.5 shows the result, 
Show[{p0,ListPlot[clusters,Frame True,PlotMarkers Automatic,

Axes None],

ListPlot[centers,PlotMarkers " ",PlotStyle {Black,Large}]},

AspectRatio 0.7]

⇒ → →
→

→ →
→

♠

 

⇐

  
Fig. 3.5 The result of the clustering in case of five clusters 

In order to visualize the result we carry out the same steps we did in case of 
three clusters, 
clustersF=ClusterClassify[datap,5,Method "KMeans",

PerformanceGoal "Quality"]

⇒ →
→  

⇐ ClassifierFunction
 

clustersF[{-6,-8},"Probabilities"]//Normal⇒  
57 23

14 13

1 1.,2 3.34515 10 ,3 9.54873 10 ,

4 2.77988 10 ,5 3.279 0 }

{

83 1

− −

− −

→ → × → ×

→ ×

⇐

→ ×
 

clustersF[{-5,-1},"Probabilities"]//Normal⇒  
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11 6

1 0.00221919,2 0.00757256,

3 1.97708 10 ,4 0.990203,5 5.05125 }

{

10− −

→ →

→ × → ×

⇐

→
 

pD=DensityPlot[clustersF[{x,y}],{x,-12,2},{y,-12,7},

PlotPoints 100];

⇒
→  

Figure 3.6 shows the result, 
Show[{pD,p0,ListPlot[clusters,Frame True,

PlotMarkers Automatic,Axes None],

ListPlot[centers,PlotMarkers " ",PlotStyle {Black,Large}]},

AspectRatio 0.7]

⇒ →
→ →

→ →
→

♠  

⇐

  
Fig. 3.6 The result of the clustering in case of five clusters with boundaries 

Now the value of the silhouette coefficient is smaller than in case of three 
clusters, indicating worse quality of clustering, less separated clusters. 
index=Map[#-1&,ClusteringComponents[datap,5,1,

Method "KMeans",PerformanceGoal "Quality"]];

⇒
→ →  

Export["pred.mtx",{index}]⇒  
pred.mtx⇐  

  
index=mmread('pred.mtx') 

  
ind=index[0]
s=metrics.silhouette_score(X,ind,'euclidean')
s

 

0.638162⇐  

As we see now, the quality of the clustering is not so good compared to the 
case of the three clusters. Consequently silhouette coefficient is an indicator for 
finding the proper number of clusters (Okabe and Yamada 2018). 
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As an imaging example let us consider images of three species: zebras, gorillas 
and penguins, see Fig. 3.7. 

zebra={⇒ , , , , }; 

gorilla={⇒ , , , , }; 

penguin={⇒ , , , , }; 

Fig. 3.7 Images of three species of animals to be clustered 
 

First, let us employ Mathematica. 

Mathematica 
In order to employ numerical data we employ feature extraction to reduce 
dimensions using t - SNE (t distributed Stochastic Neighbor Embedding). There is 
a class of algorithms for visualization called manifold learning algorithms that 
allow for much more complex mappings, and often provide better visualization. 
A particularly useful one is the t - SNE algorithm. This computes a new 
representation of the training data, but does not allow for the transformation of 
new data. This means this algorithm cannot be applied to a test set, rather, it can 
only transform the data it is trained for, see Chapter 1. Manifold learning can be 
useful for exploratory data analysis, but is rarely used if the final goal is supervised 
learning. 

Now, the idea behind t - SNE is to find a two-dimensional representation of 
the data that preserves the distances between points as best as possible. 
animals=Join[zebra,gorilla,penquin];⇒  

Since the images have different sizes, we resize them to size of 396×512, 
animalsReduced=Map[ImageResize[#,{392,512}]&,animals];⇒  

Let us represent them with two dimensional vectors, see Fig. 3.8. Since the 
dimension reduction algorithm is time consuming, GPU is used instead of CPU. 
reduced=

DimensionReduce[animals,2,Method "TSNE",TargetDevice "GPU"];

⇒
→ →  

Then visualizing the results, 
pani=ListPlot[MapThread[Labeled[#1,#2]&,{reduced,

animalsReduced}],Frame True,PlotRange All]

⇒
→ →  
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⇐

  
Fig. 3.8 The map of images after employing 2D dimension reduction 

As it can be seen that the different species are clustered in different groups 
quite transparently. The centers of the groups can easily be computed, 
centersM=Map[Mean[#]&,Partition[reduced,5]]⇒  
{{144.597,147.594},{-276.146,-35.0111},{131.549,-112.583}}⇐  

So here we did not employed any clustering, since the clusters are so transparent. 
Let us save the reduced coordinates of the images for Python. 

X=reduced⇒  
{{180.106,145.609},{130.228,160.8},{149.597,103.534},

{101.513,128.057},{161.541,199.97},{-324.505,-35.4624},

{-266.282,-34.5745},{-292.198,0.989372},{-284.038,-71.5398},

{-213.707,-34.4679},{79.1827,-8

⇐

9.9688},{189.736,-93.374},

{132.477,-94.0187},{109.039,-136.691},{147.311,-148.862}}

 

Export["dataX.mtx",X]⇒  
dataX.mtx⇐  

and read the file into Python. 

  
X=mmread('dataX.mtx') 

In Python we employ three clusters, 

  
import numpy as np  

It goes without saying we have got the same result as that using Mathematica, 

  
kmeans = KMeans(n_clusters=3).fit(X)
prediction= kmeans.predict(X)
prediction

 

{0,0,0,0,0,1,1,1,1,1,2,2,2,2,2}⇐  
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cent= kmeans.cluster_centers_
cent

 

{{144.597,147.594},{-276.146,-35.0111},{131.549,-112.583}}⇐  
centersP=%;⇒  

The quality of the clustering can be indicated again by the silhouette coefficient, 

  
from sklearn import metrics
s=metrics.silhouette_score(X,prediction,'euclidean')
s

 

0.779621⇐  

The result of the Python can be seen in Fig. 3.9. 
Show[{pani,ListPlot[centersM,PlotMarkers " ",

PlotStyle {Blue,Large}],ListPlot[centersP,

PlotMarkers " ",PlotStyle {Red,Large}]},AspectRatio 0.7]

⇒ →
→

→ → →

♠


 

⇐

  
Fig. 3.9 The result of the Python using KMeans Clustering on the 2D feature vectors in case K 

= 3 

3.2 Hierarchical Clustering 

Basic Theory 

Hierarchical clustering is an alternative approach identifying groups in a dataset. 
It does not require specification of the number of clusters to be generated as in 
case of K-Means Clustering method.  Hierarchical or agglomerate clustering 
groups data over a variety of scales by creating a cluster tree, dendrogram. This 
dendrogram, see Fig. 3.10, represents all possible clusters from one cluster (Step 
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4 - {a,b,c,d,e}) down to n clusters (n is the number of elements to be clustered), 
(Step 0 -{a},{b},{c},{d},{e}). 

⇐

  
Fig. 3.10 The dendrogram representing all of the clusters of a data set 

The user can decide the level of linkage of the clusters, which will determine 
the number of clusters (James et al. 2013). 

First let us employ the same data set what we used in the previous section. 

3.2.1 Dendrogram for Small Data Set 

Load data set and the clustering function from Python depository. 

  

from sklearn.datasets import make_blobs
from scipy.cluster.hierarchy import linkage
import numpy as np
from sklearn.cluster import AgglomerativeClustering

 

The data set 

  
X, y = make_blobs(random_state=1) 

  
X  

{{-0.794152,2.10495},{-9.15155,-4.81286},{-11.4418,-4.45781},

{-9.76762,-3.19134},{-4.53656,-8.40186},{-6.26302,-8.10666},

{-6.38481,-8.47303},{-9.20491,-4.57688},{-2.76018,5.55121},

{-1.17104,4.33092},

⇐

{-10.0364,-5.56912},{-9.87589,-2.82386},

{-8.87629,-3.54445},{-6.02606,-5.96625},{-7.04747,-9.27525},

{-1.37397,5.29163},{-6.25393,-7.10879},{0.0852519,3.64528}}

L
 

datap=%;⇒  
In order to illustrate the dendrogram we can employ Mathematica function, 
Needs["HierarchicalClustering`"]⇒
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DendrogramPlot[datap,TruncateDendrogram 18,HighlightLevel 3,

Orientation Left]

⇒ → →
→

 

⇐

  
Fig. 3.11 The dendrogram of the make_blobs data set shading the elements in case of three 

clusters 

Figure 3.11 shows clearly that the linkage for one cluster is very high, for three 
clusters (shaded) is definitely lower. 

Let us employ first Python, after the analysis of the dendrogram, and decided 
three clusters. 

Python 
Employing Python code, we get the labels of the three clusters, 

  

X, y = make_blobs(random_state=1)
ac = AgglomerativeClustering(n_clusters=3,
 affinity='euclidean',linkage='complete')
labels = ac.fit_predict(X)
prediction=labels
prediction

 

{1,2,2,2,0,0,0,2,1,1,2,2,0,1,0,0,0,1,2,2,0,2,0,1,2,0,

0,1,1,0,1,1,0,1,2,0,2,2,2,0,0,2,1,2,2,0,1,1,1,1,2,

0,0,0,1,0,2,2,1,1,2,0,0,2,2,0,1,0,1,2,2,2,0,1,1,2,

0,0,1,2,1,2,2,0,1,1,1,1,2,1,0,1,1,2,2,0,0,1,0,

⇐

1}

 

labels=%;⇒  
Let us visualize the clusters, see Fig. 3.12 
p0=ListPlot[datap,Frame True,PlotMarkers "Δ",Axes None]⇒ → → →  
dataC=MapThread[Flatten[{#1,#2}]&,{datap,labels}];⇒  
dataC1=Map[{#[[1]],#[[2]]}&,Select[dataC,#[[3]]==0&]];⇒  
dataC2=Map[{#[[1]],#[[2]]}&,Select[dataC,#[[3]]==1&]];⇒  
dataC3=Map[{#[[1]],#[[2]]}&,Select[dataC,#[[3]]==2&]];⇒  
Show[{p0,ListPlot[{dataC1,dataC2,dataC3},Frame True,

PlotMarkers Automatic,Axes None]},AspectRatio 0.7]

⇒ →
→ → →  
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⇐

  
Fig. 3.12 The result of the Hierarchical Clustering using Python 

The quality of the clustering, 

  
from sklearn import metrics
s=metrics.silhouette_score(X,prediction,'euclidean')
s

 

0.769709⇐  

Now let us suppose two clusters, see Fig. 3.13. 
DendrogramPlot[datap,TruncateDendrogram 18,HighlightLevel 2,

Orientation Left]

⇒ → →
→

 

⇐

  
Fig. 3.13 The dendrogram assuming two clusters 

Using Python prediction for the labels, 

  

X, y = make_blobs(random_state=1)
ac = AgglomerativeClustering(n_clusters=2,
 affinity='euclidean',linkage='complete')
labels = ac.fit_predict(X)
prediction=labels
prediction
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{1,0,0,0,0,0,0,0,1,1,0,0,0,1,0,0,0,1,0,0,0,0,0,1,0,

0,0,1,1,0,1,1,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,1,1,1,

0,0,0,0,1,0,0,0,1,1,0,0,0,0,0,0,1,0,1,0,0,0,0,1,1,

0,0,0,1,0,1,0,0,0,1,1,1,1,0,1,0,1,1,0,0,0,0,1,0,

⇐

1}

 

labels=%;⇒  
Visualizing the result, see Fig. 3.14. 
dataC=MapThread[Flatten[{#1,#2}]&,{datap,labels}];⇒  
dataC1=Map[{#[[1]],#[[2]]}&,Select[dataC,#[[3]]==0&]];⇒  
dataC2=Map[{#[[1]],#[[2]]}&,Select[dataC,#[[3]]==1&]];⇒  
Show[{p0,ListPlot[{dataC1,dataC2},Frame True,

PlotMarkers Automatic,Axes None]},AspectRatio 0.7]

⇒ →
→ → →  

⇐

  
Fig. 3.14 The result of the Hierarchical Clustering using Python in case of k = 2 

The quality of the clustering is nearly the same, a bit worse, 

  
from sklearn import metrics
s=metrics.silhouette_score(X,prediction,'euclidean')
s

 

0.765825⇐  

However employing four clusters, one of the clusters contains only one 
element, see Fig. 3.15. 
DendrogramPlot[datap,TruncateDendrogram 18,HighlightLevel 4,

Orientation Left]

⇒ → →
→
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⇐

  
Fig. 3.15 The dendrogram assuming four clusters 

  

X, y = make_blobs(random_state=1)
ac = AgglomerativeClustering(n_clusters=4,
 affinity='euclidean',linkage='complete')
labels = ac.fit_predict(X)
prediction=labels
prediction

 

{0,2,2,2,1,3,3,2,0,0,2,2,1,0,1,3,3,0,2,2,3,2,3,0,2,

1,3,0,0,1,0,0,1,0,2,3,2,2,2,3,3,2,0,2,2,3,0,0,0,0,

2,1,3,3,0,3,2,2,0,0,2,3,3,2,2,3,0,3,0,2,2,2,3,0,0,

2,3,3,0,2,0,2,2,3,0,0,0,0,2,0,3,0,0,2,2,3,1,0,3,

⇐

0}

 

Figure 3.16 shows the result, which indicates that the linearly separable 
problem became a non-linearly separable one. 

labels=%;⇒  
dataC=MapThread[Flatten[{#1,#2}]&,{datap,labels}];⇒  
dataC1=Map[{#[[1]],#[[2]]}&,Select[dataC,#[[3]]==0&]];⇒  
dataC2=Map[{#[[1]],#[[2]]}&,Select[dataC,#[[3]]==1&]];⇒  
dataC3=Map[{#[[1]],#[[2]]}&,Select[dataC,#[[3]]==2&]];⇒  
dataC4=Map[{#[[1]],#[[2]]}&,Select[dataC,#[[3]]==3&]];⇒  
Show[{p0,ListPlot[{dataC1,dataC2,dataC3,dataC4},Frame True,

PlotMarkers Automatic,Axes None]},AspectRatio 0.7]

⇒ →
→ → →  

⇐
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Fig. 3.16 The result of the Hierarchical Clustering using Python in case of k = 4 



 

The quality of the clustering now is seemingly worse, 

  
from sklearn import metrics
s=metrics.silhouette_score(X,prediction,'euclidean')
s

 

0.651076⇐  

3.2.2 Image Segmentation 

Our problem is to compute the sizes of the different areas of the cross section of  
a test-piece of a rock, which indicate the concentration  of the different mineral 
components. After using preparation employing acid, basically there are three 
clusters: blue, yellow and brown). However the intensities of the pixels are 
different, see Fig. 3.17. 

img=⇒ ;

 
Fig. 3.17 The digital image of the prepared cross section of the test-piece of the rock 

Now we shall employ Hierarchical Clustering to find three distinct clusters, and 
the number of the elements which are proportional with area of the different 
mineral components. It goes without saying it is a 2D approach, and provides only 
a rough estimation for the real 3D situation. 

First let us display the RGB vectors of the different pixels, see Fig. 3.18. 
pv=ImageData[img];⇒  
X=Flatten[pv,1];ListPointPlot3D[X,PlotStyle {PointSize[0.001]},

AxesLabel {Red,Green,Blue},BoxRatios {1,1,1}]

⇒ →
→ →  
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⇐

  
Fig. 3.18 The pixel vectors of the image in the RGB color space 

 

Mathematica 
In Mathematica we can solve the problem using a built-in function. 
c0=FindClusters[X,3];⇒  

Figure 3.19 shows the three distinct sets of pixels in the RGB space. 
ListPointPlot3D[c0,PlotStyle {PointSize[0.001]},

AxesLabel {Red,Green,Blue},BoxRatios {1,1,1}]

⇒ →
→ →  
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⇐

  
Fig. 3.19 The clustered pixel vectors in the RGB color space 

The number of pixels belonging to the different clusters can easily be computed. 
n1=Length[c0[[1]]]⇒  
14 002⇐  
n2=Length[c0[[2]]]⇒  
10 057⇐  
n3=Length[c0[[3]]]⇒  
2341⇐  

The total number of pixels, 

n=n1+n2+n3⇒  
26 400⇐  

Double check 

n==200 132⇒ ×  
True⇐  

Then the ratio of the areas can be computed, too 
{n1,n2,n3}/n//N⇒  
{0.530379,0.380947,0.0886742}⇐  

In order to visualize the segmented image the pixels should be labeled 
Xn=MapThread[(#1 #2)&,{X,Map[ToString[#]&,Range[n]]}];⇒ →  

Now we carry out the clustering again together with the corresponding labels 
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c1=FindClusters[Xn,3];⇒  
The three clusters are 
c11=Map[ToExpression[#]&,c1[[1]]];⇒  
c12=Map[ToExpression[#]&,c1[[2]]];⇒  
c13=Map[ToExpression[#]&,c1[[3]]];⇒  

We use the following colors for visualization of the different clusters: cluster 
1 → Red, cluster 2 → Green, and cluster 3 → Blue 

Then we color the pixels accordingly 
pc=Table[0,{n}];⇒  
Do[If[MemberQ[c11,i],pc[[i]]={1,0.,0.}];

If[MemberQ[c12,i],pc[[i]]={0.,1,0}];

If[MemberQ[c13,i],pc[[i]]={0,0,1}],{i,1,n}]

⇒
 

In matrix form 
pcdata=Partition[pc,200];⇒  
Dimensions[pcdata]⇒  
{132,200,3}⇐  

Then the segmented image is, see Fig. 3.20. 
pgnew=Image[pcdata]⇒

 

⇐

  
Fig. 3.20 The segmented image 

The original and the segmented images can be seen on Fig. 3.21. 
{img,pgnew}⇒

 

⇐ {

 , 

}
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Fig. 3.21 The original and the segmented image 



 

Python 
To solve the problem in Python, we export the set of the RGB vectors of the pixels 
in a file 
Export["dataX.mtx",X]⇒  
dataX.mtx⇐  

Loading the necessary procedures 

  
from numpy import array, matrix
from scipy.io import mmread, mmwrite
import numpy as np

 

Loading the clustering function (Pestunova et al. 2015), 

  
from scipy.cluster.hierarchy import linkage
import numpy as np
from sklearn.cluster import AgglomerativeClustering

 

Reading the data set 

  
X=mmread('dataX.mtx') 

Predicting the labels assuming of three clusters 

  

ac = AgglomerativeClustering(n_clusters=3,
 affinity='euclidean',linkage='complete')
labels = ac.fit_predict(X)
prediction=labels
prediction

 

 

total=%;⇒  

counting the elements in the different sets, 
⇒ c1=Select[total,#==0&]; Length[c1] 

17 531⇐  
⇒ c2=Select[total,#==1&]; Length[c2] 

7517⇐  
⇒ c3=Select[total,#==2&]; Length[c3] 

1352⇐  
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The result is different from that of Mathematica. 
Length[total]⇒  
26 400⇐  

Creating segmented image, 

cluster1={};cluster2={};cluster3={};⇒  
Do[Which[total[[i]]==0,AppendTo[cluster1,i],total[[i]]==1,

AppendTo[cluster2,i],total[[i]]==2,AppendTo[cluster3,i]],

{i,1,26400}];

⇒
 

pc=Table[0,{n}];n⇒  
26 400⇐  
Do[If[MemberQ[cluster1,i],pc[[i]]={1,0.,0.}];

If[MemberQ[cluster2,i],pc[[i]]={0.,1,0}];

If[MemberQ[cluster3,i],pc[[i]]={0,0,1}],{i,1,n}]

⇒
 

In matrix form 
pcdata=Partition[pc,200];⇒  
Dimensions[pcdata]⇒  
{132,200,3}⇐  

Then the segmented image is (Fig. 3.22) 
pgnew=Image[pcdata]⇒

 

⇐

  
Fig. 3.22 The segmented image via Python 

The original and the segmented images (Fig. 3.23) 
{img,pgnew}⇒

 

  172 3  Clustering



 

⇐ {

 , 

}

Fig. 3.23 The original and the segmented image via Python 

The results of Python seems more “consistent”, less diverse, compare Figs. 
3.23 and 3.24 

⇐

Fig. 3.24 The segmented image via Mathematica 

In general, Hierarchical Clustering can be successfully employed for image 
segmentation (Galbiati 2009). 

3.3  Density-Based Spatial Clustering of Applications with 
       Noise 

Basic Theory 

The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a 
clustering algorithm that groups together points, see Fig. 3.25, that are closely 
packed (core points, red A) or reachable from the core points (yellow points, B) 
together marking as outliers points (blue N) that lie alone in low-density regions. 

It can be useful in case of not too many clusters, not-flat geometry but arbitrary 
shaped clusters and in case of outliers. 

There are two parameters, the radius of the red circles and the minimal number 
of the red (A) points. 
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Fig. 3.25 Topology of the DBSCAN method 

These parameters are the weak point of the method, since the result is very 
sensitive on these parameter values (Müller and Guido 2017).  

3.3.1  Data Set Moons 

Simple introductory example demonstrates the positive features of the method. 
Let us consider the moon data set from the Python repository, 

  
from sklearn.datasets import make_moons

X, y =make_moons(n_samples=200,noise=0.05,random_state=0)
 

The 2D data points are 

  
X  

{{0.816805,0.521645},{1.6186,-0.379829},{-0.0212695,0.273728},

{-1.02181,-0.07544},{1.76655,-0.170699},{1.88203,-0.0423845},

{0.974816,0.209994},{0.887988,-0.489367},{0.898652,0.366378},

{1.11639,-0.534

⇐

604},{-0.3638,0.827902},{0.247024,-0.238567},

....

{0.424479,0.932688},{0.808614,0.535999},{0.940009,0.271114},

{-0.0160918,0.373696},{-0.536334,0.860268},{1.88282,0.244356},

{0.175752,-0.007231},{0.124236,1.0079},{1.62153,-0.223285}}

 

trainX=%;⇒  
In order to visualize them we use their labels, 

  
y  
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{0,1,1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0,1,1,0,1,0,1,1,1,1,

0,0,0,1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0,1,1,0,1,1,0,1,0,0,1,

0,0,1,0,1,0,1,0,0,1,0,0,1,0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,0,

0,1,1,0,0,1,0,1,1,1,1,0,

⇐

1,1,1,0,0,0,1,0,0,1,0,0,0,0,0,0,1,

0,1,1,0,0,0,1,0,1,0,0,1,1,1,0,0,0,1,1,1,1,0,1,0,1,1,0,0,0,

0,1,1,0,1,1,1,0,0,1,0,1,1,0,0,1,1,0,1,1,1,0,1,1,1,0,0,0,0,

1,1,1,0,0,0,1,0,1,1,1,0,0,1,0,0,0,0,0,0,1,0,1,1,0,1}

 

clusters=%;⇒  
total=MapThread[{#1,#2}&,{trainX,clusters}];⇒  
clust1=Select[total,#[[2]]==0&];⇒  
clust2=Select[total,#[[2]]==1&];⇒  
pclust1=Map[#[[1]]&,clust1];⇒  
pclust2=Map[#[[1]]&,clust2];⇒  

Then Fig. 3.26 shows the two data sets, 
p0=ListPlot[{pclust1,pclust2},PlotStyle {Pink,Green}]⇒ →

 

⇐

  
Fig. 3.26 The moon data sets 

First let us try to separate the two sets via K-Means Clustering. In this case the 
number of clusters should be given. 

Mathematica 
Using Mathematica we get, 
c=FindClusters[trainX,2,Method "KMeans"];⇒ →  

Figure 3.27 shows that this method provides a linear separation only, 
ListPlot[{c[[1]],c[[2]]}]⇒
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⇐

  
Fig. 3.27 The moon data sets clustered by K-Mean Clustering 

In case of Hierarchical Clustering we do not need to specify the number of 
clusters preliminary (Fig. 3.28), 
Needs["HierarchicalClustering`"]⇒  
DendrogramPlot[trainX,TruncateDendrogram 10,HighlightLevel 2]⇒ → →  

⇐

  
Fig. 3.28 The dendrogram of the clustered moon data set 

XN=MapThread[(#1 ToString[#2])&,{trainX,Range[Length[trainX]]}];⇒ →  
Employing two clusters, we get again basically linear separation, see Fig. 3.29. 
c=FindClusters[XN,2]⇒  
{{1,3,4,11,15,17,19,20,23,25,30,31,32,34,35,39,40,42,43,46,48,51,

54,56,57,59,60,62,64,66,67,69,70,72,74,76,77,79,82,85,86,88,91,

94,99,100,103,105,106,107,108,110,111,112,113,114,117,120,121,

122,123,1

⇐

24,125,126,132,133,138,142,143,144,145,149,150,154,156,

159,160,163,167,171,172,173,174,178,179,180,182,186,187,189,190,

191,192,193,195,196,199},

{2,5,6,7,8,9,10,12,13,14,16,18,21,22,24,26,27,28,29,33,36,37,38,

41,44,45,47,49,50,52,53,55,58,61,63,65,68,71,73,75,78,80,81,83,

84,87,89,90,92,93,95,96,97,98,101,102,104,109,115,116,118,119,

127,128,129,130,131,134,135,136,137,139,140,141,146,147,148,151,

152,153,155,157,158,161,162,164,165,166,168,169,170,175,176,177,

181,183,184,185,188,194,197,198,200}}
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Let us visualize it, see Fig. 3.29, 
c1=Map[ToExpression[#]&,c[[1]]]; c2=Map[ToExpression[#]&,c[[2]]];⇒  
C1=Map[trainX[[#]]&,c1];⇒  
C2=Map[trainX[[#]]&,c2];⇒  
ListPlot[{C1,C2}]⇒

 

⇐

  
Fig. 3.29 Result of the Hierarchical Clustering 

For DBSCAN again one does not need to know the number of clusters, 
c=FindClusters[trainX,Method "DBSCAN"];⇒ →  
Length[c]⇒  
2⇐  

The result is nearly perfect, see Fig. 3.30. 
ListPlot[{c[[1]],c[[2]]}]⇒

 

⇐

  
Fig. 3.30 Result of the DBSCAN Clustering 

Some “misclustered” points can be considered as noises, namely outliers. 
Let us visualize the regions and the boundaries of the clusters. The labels of 

the data elements are, 
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index=Table[0,{i,1,200}];⇒  
Do[If[MemberQ[c[[2]],trainX[[i]]],index[[i]]=1],{i,1,200}];⇒  
index⇒  
{0,1,1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0,1,1,0,1,0,1,1,1,1,

0,0,0,1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0,1,1,0,1,1,0,1,0,0,1,

0,0,1,0,1,0,1,0,0,1,0,0,1,0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,0,

0,1,1,0,0,1,0,1,1,1,1,0,

⇐

1,1,1,0,0,0,1,0,0,1,0,0,0,0,0,0,1,

0,1,1,0,0,0,1,0,1,0,0,1,1,1,0,0,0,1,1,1,1,0,1,0,1,1,0,0,0,

0,1,1,0,1,1,1,0,0,1,0,1,1,0,0,1,1,0,1,1,1,0,1,1,1,0,0,0,0,

1,1,1,0,0,0,1,0,1,1,1,0,0,1,0,0,0,0,0,0,1,0,1,1,0,1}

 

Now we define a clustering function, 
f=ClusterClassify[trainX,Method "DBSCAN"]⇒ →  

⇐ ClassifierFunction
 

Then Fig. 3.31 shows the result 
Show[{DensityPlot[f[{u,v}],{u,-1.1,2.1},{v,-0.7,1.2},

PlotPoints 50],p0}]

⇒
→

 

⇐

  
Fig. 3.31 The region of the clusters in case of the DBSCAN Clustering 

Unfortunately the margin between the two clusters for the first coordinates 
x ≥ 1 is practically zero, which makes the method very sensitive on the noises or 
measuring errors. 

We shall see in the next section that the Spectral Clustering can maximize this 
margin, resulting a robust clustering. 
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Python 
Now we employ Python with parameters ϵ = 0.2 and min_samples = 5. Let us 
load the clustering function, 

  
from sklearn.cluster import DBSCAN
db = DBSCAN(eps=0.2, min_samples=5,metric='euclidean') 

Training the method, 

  
y_db=db.fit_predict(X) 

The resulted labels are, 

  
y_db  

{0,1,1,0,1,1,0,1,0,1,0,1,1,1,0,0,0,1,0,0,1,1,0,1,0,1,1,1,1,

0,0,0,1,1,0,1,1,0,0,1,1,0,0,1,1,0,0,0,1,1,0,1,1,0,1,0,0,1,

0,0,1,0,1,0,1,0,0,1,0,0,1,0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,0,

0,1,1,0,0,1,0,1,1,1,1,0,

⇐

1,1,1,0,0,0,1,0,0,1,0,0,0,0,0,0,1,

0,1,1,0,0,0,1,0,1,0,0,1,1,1,0,0,0,1,1,1,1,0,1,0,1,1,0,0,0,

0,1,1,0,1,1,1,0,0,1,0,1,1,0,0,1,1,0,1,1,1,0,1,1,1,0,0,0,0,

1,1,1,0,0,0,1,0,1,1,1,0,0,1,0,0,0,0,0,0,1,0,1,1,0,1}

 

yP=%;⇒  
We can compare the errors of the two codes. 

Python error 
Norm[yP-y]⇒  
0⇐  

Mathematica  error 
Norm[index-y]⇒  
2⇐  

As expected, Mathematica provide four erroneous, misclustered points. 

3.3.2  Segmentation of MRI of Brain 

Medical image processing is the most challenging and emerging field nowadays. 
Magnetic Resonance Images (MRI) acts as the source for the development of 
classification system. The extraction, identification and segmentation of infected 
region from Magnetic Resonance (MR) brain image is of significant concern but 
a dreary and time-consuming task performed by radiologists or clinical experts, 
and the final classification accuracy depends on their experience only. To 
overcome these limitations, it is necessary to use computer-aided techniques. 
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Improving the efficiency of classification accuracy and reducing the recognition 
complexity play important role in the medical imaging. 

Let us consider a brain MRI, see Fig. 3.32. 

img=⇒ ;

 
Fig. 3.32 An MRI of a brain 

Let us employ different parameter values of the DBSCAN method in order to 
study their effect on the clustering (Qixiang et al. 2003). 

Too low neighborhood radius (ϵ) and low numbers of neighbors results too 
many clusters, see Fig. 3.33. 
ClusteringComponents[img01,Method {"DBSCAN",

"NeighborsNumber" 3,"NeighborhoodRadius" 0.01}]//Colorize

⇒ →
→ →

 

⇐

  
Fig. 3.33 Result of DSBCAN method with ϵ = 0.01 and NeighborsNumber = 3 

Increasing the minimal number of neighbors results even even more 
fragmented clusters. The optimal value for minimal neighbors is about the data 
dimension plus one, or higher. In our case let it 2+2= 4 up to ϵ = 0.1, see Fig. 3.34. 
ClusteringComponents[img01,Method {"DBSCAN",

"NeighborsNumber" 4,"NeighborhoodRadius" 0.1}]//Colorize

⇒ →
→ →

 

  180 3  Clustering



 

⇐

  
Fig. 3.34 Result of DSBCAN method with ϵ = 0.1 and NeighborsNumber = 4 

Now we have got only a few clusters. However decreasing ϵ = 0.053, we can 
get a realistic segmentation, see Fig. 3.35. 
ClusteringComponents[img01,Method {"DBSCAN",

"NeighborsNumber" 4,"NeighborhoodRadius" 0.053}]//Colorize

⇒ →
→ →

 

⇐

  
Fig. 3.35 Result of DSBCAN method with ϵ = 0.053 and minimal neighbors = 4 

Undoubtedly, the proper adjustment of the parameters of the DBSCAN 
method is its weakest point. 

3.4  Spectral Clustering 

Basic Theory 

It makes use of the spectrum (eigenvalues) of the similarity (affinity) matrix of 
the data to perform dimensionality reduction before clustering in fewer 
dimensions. To perform a spectral clustering we need three main steps (Han et al. 
2017): 

1. Create a similarity graph between our N objects to cluster. 
2. Compute the first k eigenvectors of its affinity matrix to define a feature 

vector for each object. 
3. Run k-means on these features to separate objects into k classes. 
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Figure 3.36 shows the general framework for spectral clustering approaches. 

 
Fig. 3.36 The framework of spectral clustering approaches 

Spectral clustering is effective in high-dimensional applications such as image 
processing. Theoretically, it works well when certain conditions apply. 
Scalability, however, is a challenge. Computing eigenvectors on a large matrix is 
costly. Spectral clustering can be combined with other clustering methods, such 
as biclustering (Aoullay 2018). 

3.4.1  Nonlinear Data Set Moons 

Now we are going to solve the moon clustering problem discussed in the previous 
section. 

Loading the necessary procedures, 

  
from numpy import array, matrix
from scipy.io import mmread, mmwrite
import numpy as np

 

Loading data set. Now we consider more data. 

  
from sklearn.datasets import make_moons
X, y = make_moons(n_samples=1500,noise=0.05,random_state=0) 

Providing the data for Mathematica, 

  
mmwrite('pubi.mtx',X) 

  
mmwrite('puba.mtx',[y]) 

Reading data for Mathematica 
trainX=Import["pubi.mtx"];⇒  
clusters=Import["puba.mtx"];⇒  

Preparation data for visualization, 
total=MapThread[{#1,#2}&,{trainX,First[clusters]}];⇒  
clust1=Select[total,#[[2]]==0&];⇒  
clust2=Select[total,#[[2]]==1&];⇒  
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pclust1=Map[#[[1]]&,clust1];⇒  
pclust2=Map[#[[1]]&,clust2];⇒  

The two clusters can be seen in Fig. 3.37. 
p0=ListPlot[{pclust1,pclust2},PlotStyle {Pink,Green}]⇒ →

 

⇐

  
Fig. 3.37 The moon data set 

Let us try to separate the two sets via Spectral Clustering. In this case the 
number of clusters should be given. 

Mathematica 
In case of this method we do not need to give the number of clusters. To construct 
similarity graph, a parameter ε-neighborhood can be prespecified. Each vertex is 
connected to vertices falling inside a ball of radius ε where ε is a real value that 
has to be tuned in order to catch the local structure of data. 
c=FindClusters[trainX,

Method {"Spectral","NeighborhoodRadius" 0.047}];

⇒
→ →  

n=Length[c]⇒  
3⇐  

ListPlot[Table[c[[i]],{i,1,n}]]⇒
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⇐

  
Fig. 3.38 The clustered moon data set in case ϵ = 0.047 

However only this parameter cannot control the process fully, see Fig. 3.38, 
since K-Means Clustering is involved. Therefore specification the number of the 
clusters can be more efficient, see Fig. 3.39. 
c=FindClusters[trainX,2,Method "Spectral"];⇒ →  
n=Length[c]⇒  
2⇐  

ListPlot[Table[c[[i]],{i,1,n}]]⇒

 

⇐

  
Fig. 3.39 The clustered moon data set in case of two clusters, n = 2 

In order to visualize the regions and the boundary of the clusters, we compute 
the labels of the clustered data elements. 
index=Table[0,{i,1,1500}];⇒  
Do[If[MemberQ[c[[2]],trainX[[i]]],index[[i]]=1],{i,1,1500}];⇒  
cuki=MapThread[Flatten[{#1,#2}]&,{trainX,index}];⇒  
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Figure 3.40 shows the regions of the two clusters. It can be seen that the 
margin is maximized consequently this result is more robust than that provided 
by DBSCAN method in the previous section. 
Show[{p0,ListDensityPlot[cuki,Mesh None,

InterpolationOrder 0,ColorFunction "SouthwestColors"],p0}]

⇒ →
→ →

 

⇐

  
Fig. 3.40 The clustered regions of the moon data set in case of two clusters, n = 2 

Python 
Now let us load the corresponding Python clustering procedure, 

  
from sklearn import cluster
spectral = cluster.SpectralClustering(n_clusters=2,
 eigen_solver='arpack',affinity="nearest_neighbors")

 

Computing eigenvalues on a large matrix frequently requires scaling (Luxburg 
2007). So scaling and then carry out prediction, we get 

  

from sklearn.preprocessing import StandardScaler
X = StandardScaler().fit_transform(X)
spectral.fit(X)
y_pred = spectral.labels_.astype(np.int)

 

The norm of the misclustered elements, 

  
import numpy  

  
from numpy import linalg as LA  

  
LA.norm(y_pred-y) 

0.⇐  
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3.4.2  Image Coloring 

As an application of the Spectral Clustering, let us consider a coloring problem. 
Figure 3.41 shows a grayscale image, which we would like to colorize. 

img=⇒ ;

 
Fig. 3.41 A grayscale image 

This can be done using Mathematica’s built-in function, see Fig. 3.42. 
Colorize[img]⇒

 

⇐

  
Fig. 3.42 Colorized grayscale image via Mathematica built-in function 

However, we would like to solve the problem using Spectral Clustering 
method. Let us consider the data matrix of the image 
imgData=ImageData[img];⇒  
imgData[[1,2]]⇒  
0.619608⇐  
{m,n}=Dimensions[imgData]⇒  
{107,150}⇐  

We collect the pixel values 

index={};value={};⇒  
Do[AppendTo[index,{i,j}];

AppendTo[value,imgData[[i,j]]],{i,1,m},{j,1,n}]

⇒
 

mn=Dimensions[value]⇒  
{16050}⇐  
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Then let us cluster them, creating a clustering function 
c=ClusterClassify[value,Method "Spectral"]⇒ →  

⇐ ClassifierFunction
 

We assign the labels to the data elements 
cucu=Map[c[#]&,value];⇒  

Employing the following colors corresponding to the seven clusters, 
colorVector={{0.1`,0.5`,0.3`},{1,0.9`,0.32`},{0.75`,0.65`,0.1`},

{0.45`,0.53`,0.4`},{0.86`,0.33`,0.41`},{0.14`,0.84`,0.63`},

{0.42`,0.36`,0.75`}};

⇒

 

szin=Map[RGBColor[#]&,colorVector]⇒  
⇐ { , , , , , , } 

The different colors can be assigned to the data elements according to their 
clusters, 

colorData={};⇒  
Do[AppendTo[colorData,colorVector[[cucu[[i]]]]],{i,1,First[mn]}];⇒  

Arranging the colored pixels in matrix form of 107×150 
cacaData=Partition[colorData,150];⇒  

We get the colorized form of the grayscale image, see Fig. 3.43 
Image[cacaData]⇒

 

⇐

  
Fig. 3.43 Colorized grayscale image via Spectral Clustering 

3.5  Comparison of Clustering Methods 

3.5.1  Measurement of Quality of Cluster Analysis 
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Silhouette analysis can be used to study the separation distance between the 
resulting clusters. The silhouette plot displays a measure of how close each point 
in one cluster is to points in the neighboring clusters and thus provides a way to 
assess parameters like number of clusters visually. This measure has a range of 
[−1, 1]. 

The clustering performance can be evaluated by computing as, 

( )
=

max
i

i
i

b a
s

a ,b
−  

where ai is the mean distance between the i-th sample and all other points in the 
same clusters, and b is the mean distance between a sample and all the other points 
of the nearest cluster. The average value of the silhouette coefficient is called 
silhouette score. Python has a built in function 

  
from sklearn import metrics
s=metrics.silhouette_score(X,prediction,'euclidean')
s

 

Silhouette coefficients (as these values are referred to as) near 1 indicate that 
the sample is far away from the neighboring clusters. A value of 0 indicates that 
the sample is on or very close to the decision boundary between two neighboring 
clusters and negative values indicate that those samples might have been assigned 
to the wrong cluster. 

3.5.2  Optimal Number of Clusters 

In this example the silhouette analysis is used to choose an optimal value for the 
number of clusters. The silhouette plot shows that the nclusters value of 3, 5 and 6 
are a bad pick for the given data due to the presence of clusters with below average 
silhouette scores and also due to wide fluctuations in the size of the silhouette 
plots. Silhouette analysis is more ambivalent in deciding between 2 and 4. 

Also from the thickness of the silhouette plot the cluster size can be visualized. 
The silhouette plot for cluster 0 when nclusters is equal to 2, is bigger in size owing 
to the grouping of the 3 sub clusters into one big cluster. However when the nclusters 
is equal to 4, all the plots are more or less of similar thickness and hence are of 
similar sizes as can be also verified from the labeled scatter plot on the right. 
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from __future__ import print_function

from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
from sklearn.metrics
 import silhouette_samples,silhouette_score

import matplotlib.pyplot as plt
import matplotlib.cm as cm
import numpy as np

 

# Generating the sample data from make_blobs
# This particular setting has one distinct cluster and
  3 clusters placed close
# together.
X, y = make_blobs(n_samples=500,
                  n_features=2,
                  centers=4,
                  cluster_std=1,
                  center_box=(-10.0, 10.0),
                  shuffle=True,
                  random_state=1)  # For reproducibility

 

range_n_clusters = [2, 3, 4, 5, 6]

for n_clusters in range_n_clusters:
    # Create a subplot with 1 row and 2 columns
    fig, (ax1, ax2) = plt.subplots(1, 2)
    fig.set_size_inches(18, 7)

 

  # The 1st subplot is the silhouette plot
    # The silhouette coefficient can range
      from -1, 1 but in this example all
    # lie within [-0.1, 1]
    ax1.set_xlim([-0.1, 1])
    # The (n_clusters+1)*10 is for inserting blank space
      between silhouette
    # plots of individual clusters, to demarcate them clearly.
    ax1.set_ylim([0, len(X) + (n_clusters + 1) * 10])

 

  # Initialize the clusterer with n_clusters value and
    a random generator
    # seed of 10 for reproducibility.
    clusterer = KMeans(n_clusters=n_clusters, random_state=10)
    cluster_labels = clusterer.fit_predict(X)

 

    # The silhouette_score gives the average value for
      all the samples.
    # This gives a perspective into the density and
      separation of the formed
    # clusters
    silhouette_avg = silhouette_score(X, cluster_labels)
    print("For n_clusters =", n_clusters,
          "The average silhouette_score is :", silhouette_avg)
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    # Compute the silhouette scores for each sample
    sample_silhouette_values =
      silhouette_samples(X, cluster_labels)

    y_lower = 10
    for i in range(n_clusters):
        # Aggregate the silhouette scores for samples
          belonging to
        # cluster i, and sort them
        ith_cluster_silhouette_values = \
            sample_silhouette_values[cluster_labels == i]

 

        ith_cluster_silhouette_values.sort()

        size_cluster_i=ith_cluster_silhouette_values.shape[0]
        y_upper = y_lower + size_cluster_i

        color = cm.nipy_spectral(float(i) / n_clusters)
        ax1.fill_betweenx(np.arange(y_lower, y_upper),
                 0, ith_cluster_silhouette_values,
                 facecolor=color, edgecolor=color, alpha=0.7)

 

×

        # Label the silhouette plots with their cluster
          numbers at the middle
        ax1.text(-0.05, y_lower + 0.5 size_cluster_i,str(i))

        # Compute the new y_lower for next plot
        y_lower = y_upper + 10  # 10 for the 0 samples

    ax1.set_title(
        "The silhouette plot for the various clusters.")
    ax1.set_xlabel("The silhouette coefficient values")
    ax1.set_ylabel("Cluster label")

 

    # The vertical line for average silhouette score of
      all the values
    ax1.axvline(x=silhouette_avg,color="red",linestyle="--")

    ax1.set_yticks([])  # Clear the yaxis labels / ticks
    ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1])

 

    # 2nd Plot showing the actual clusters formed
    colors = cm.nipy_spectral(cluster_labels.astype
             (float) / n_clusters)
    ax2.scatter(X[:,0],X[:,1],marker='.',s=30,lw=0,alpha=0.7,
                c=colors, edgecolor='k')

 

    # Labeling the clusters
    centers = clusterer.cluster_centers_
    # Draw white circles at cluster centers
    ax2.scatter(centers[:, 0], centers[:, 1], marker='o',
                c="white", alpha=1, s=200, edgecolor='k')

 

    for i, c in enumerate(centers):
        ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1,
                    s=50, edgecolor='k')
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    ax2.set_title("The visualization of the clustered data.")
    ax2.set_xlabel("Feature space for the 1st feature")
    ax2.set_ylabel("Feature space for the 2nd feature")

 

    plt.suptitle(("Silhouette analysis for KMeans
                   clustering on sample data "
                  "with n_clusters = %d" % n_clusters),
                 fontsize=14, fontweight='bold')

plt.show()

 

The average silhouette_score is :

"For

0.70

 n_clusters 

497874960

="
2

83261
 

The average silhouette_score is :

"For

0.58

 n_clusters 

820040121

="
3

29721
 

The average silhouette_score is :

"For

0.65

 n_clusters 

051866327

="
4

29437
 

The average silhouette_score is

"For 

 :
0.5

n_clusters ="
5

6376469026194
 

The average silhouette_score is :

"For

0.45

 n_clusters 

046662943

="
6

72765
 

Results can be seen in Figs. 3.44, 3.45, 3.46, 3.47 and 3.48. 
⇒ Import["M:\\CLUSTERING\\silu_01.png"] 

⇐

 
Fig. 3.44 Silhouette analysis for KMeans clustering on sample data with n_clusters=2 
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⇒ Import["M:\\CLUSTERING\\silu_02.png"] 

⇐

 
Fig. 3.45 Silhouette analysis for KMeans clustering on sample data with n_clusters=3 

⇒ Import["M:\\CLUSTERING\\silu_03.png"] 

⇐

  
Fig. 3.46 Silhouette analysis for KMeans clustering on sample data with n_clusters=4 

⇒ Import["M:\\CLUSTERING\\silu_04.png"] 
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⇐

  
Fig. 3.47 Silhouette analysis for KMeans clustering on sample data with n_clusters=5 

⇒ Import["M:\\CLUSTERING\\silu_05.png"] 

⇐

  
Fig. 3.48 Silhouette analysis for KMeans clustering on sample data with n_clusters=6 

3.5.3  Segmentation of Parrot Image 

Let us consider the following image of a parrot (Fig. 3.49), 
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⇒  img= ; 

Fig. 3.49 Parrot image to be segmented 

The segmentation is carried out with pixel clustering employing different 
methods. The size of the image data 

⇒ datap=ImageData[img]; 
⇒ Dimensions[datap] 
⇐ {526,800,3} 

Clustering RGB pixel vectors 
⇒ X = Flatten[datap, 1];Dimensions[X] 
⇐ {420800,3} 

First we use KMeans method. Let us consider 3 clusters 
⇒ →XC=FindClusters[X,3,Method "KMeans"]; 

Visualizing the clustered RGB pixel vectors in the RGB color space (Fig. 3.50) 
⇒ →

→ →
 ListPointPlot3D[XC, PlotStyle  PointSize[0.001], 

AxesLabel  {Red, Green, Blue}, BoxRatios  {1, 1, 1}] 
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⇐

  
Fig. 3.50 Representation of the 3 clusters in the RGB color space 

Employing clustering for segmentation 
⇒

→ →
AbsoluteTiming[c=ClusteringComponents[

img,3,Method "KMeans",PerformanceGoal "Quality"];] 
⇐ {0.835659,Null} 

Let us colorize the segmented image (Fig. 3.51) 
⇒ →

→ →
 Colorize[c, ColorFunction  "RoseColors",

 ColorRules  {0  Black}]  

⇐

  
Fig. 3.51 The segmented image using 3 clusters 
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The quality of the clustering can be determined via computing the silhouette 
score of the clustering. Here we employ the built-in Python function. 

Labels of the clusters 
⇒ index=Map[#-1&,c]//Flatten;  
⇒ index//Dimensions  
⇐ {420800}  

Number of clusters 

⇒ nc=Max[index]+1  
⇐ 3  

Saving data for Python 
⇒ Export["predi.mtx",{index}] 
⇐ predi.mtx  
⇒ Export["predX.mtx",X] 
⇐ predX.mtx  

Reading data in into Python, 

  
from numpy import array, matrix
from scipy.io import mmread, mmwrite
import numpy as np

 

  
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples,

silhouette_score
 

  index=mmread('predi.mtx') 

  X=mmread('predX.mtx') 

Then we can apply the built-in function of Python, 

  
ind=index[0]
from sklearn import metrics  

  
s=silhouette_score(X,ind,'euclidean',sample_size=20000)
s

 

⇐ 0.457202

 
Further KMeans clustering with different fixed number of clusters was carried 

out, in addition different clustering methods as DBSCAN and Spectral clustering 
has been applied. In case of these latest methods the numbers of clusters are 
determined automatically by the method itself. The results are summarized in 
Tables 3.1 and 3.2. 
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Table 3.1 Comparing of Classification Methods 

Method Running Time [s] Silhouette score Number of clusters 
KMeans 0.77 0.43 2 
KMeans 0.84 0.46 3 
KMeans 1.25 0.44 4 
KMeans 1.55 0.46 5 

DBSCAN 1.63 0.14 2 (automatic) 
Spectral 2.83 0.35 2 (automatic) 

 

Table 3.2 Segmented images 

Method Segmented image Method Segmented image 
KMeans 
cluster=2 

 

KMeans 
cluster=

3 

 

KMeans 
cluster=4 

 

KMeans 
cluster=

5 

 

DBSCAN 
cluster=4 

 

Spectral 
cluster=

5 

 

Considering the quality of the appearance, the running time of the clustering 
process and the silhouette score, the KMeans method with 2 clusters seems to be 
the best choice. 
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3.6   Convert a Time Series into Image 

Conversion of time series into an image can be useful in case of classification as 
well as clustering of time series since convolutional neural network can handle 
images very effectively. 

There are many applications, i.e. one could detect abnormal behavior in one of 
the aircraft components and replace it beforehand, or even identify anomalies 
during landing and take-off procedures all by processing images! 

Fig. 3.52 Detecting abnormal behavior during landing/takeoff, see Fernandez (2019) 

There are many classical techniques to carry out this conversion process, like 
− Recurrence plot,
− Gramian Angular Field,
− Markov Transition Field.

Here we shall discuss the Gramian Angular Field method. 

3.6.1  Gramian Angular Field 

Gramian Angular Field method creates a matrix of temporal correlations for each 
( , )i jx x   elements of a time series. First it rescales the time series in a range [a, b] 
with 1  a < b  1− ≤ ≤ . Then it computes the polar coordinates of the scaled time 
series by taking the arc cosine of it. Finally, it computes the cosine of the sum of 
the angles for the Gramian Angular Summation Field (GASF) or the sine of the 
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During takeoff/landing the detecting system registers certain important flight 
parameters like altitude and speed. These registrations are time series, which can 
be converted into images (see Fig. 3.52). These images will be the input for a 
convolutional neural network, which can decide then whether anomaly occurred 
during takeoff/landing. Here the convolutional neural network basically carries 
out a classification on basis of the input images. 



 

difference of the angles for the Gramian Angular Difference Field (GADF), see 
e.g., Wang and Oates (2015).

The algorithm of the GADF is as follows:
Let's assume a given time series, 

1 2= { , ,..., }NX x x x . 

The normalized values are denoted by, 

( ) ( )min max

max min

= i ix x x x
x x

− + −

−
. 

The second step is to convert each value in the normalized time series into polar 
coordinates. 

We use the following transformation: 

= Arccos( )iφ

= i
i

t
r

N
, 

where it N∈  represents the timestamp of data point xi. 
Finally, the GADF method defines its own "special" inner product as: 

, = < , > = sin( - )i j i j i jG x x φ φ  

The following codes can carry out this algorithm: 
⇒ scaling[x_,max_,min_]:=((x-min)+(x-max))/(max-min)

⇒ φ

φ

GADF[X_,t_]:=Module[{nm,min,max,meanS, m,rm,GADFm,i,j,img},

nm=Length[t];

min=Min[X];max=Max[X];

meanS=Map[scaling[#,min,max]&,X];

m = Map[ArcCos[#]&,meanS];

rm=Map[#&,t]/nm;

GADFm=Table[1,{i,1,nm},{j,1,n

φ φ
m}];

Do[GADFm[[i,j]]=Sin[ m[[i]]- m[[j]]],{i,1,nm},{j,1,nm}];

img=Image[GADFm]//Colorize];

3.6.2  Numerical Illustration 

In order to illustrate this method, let us consider the following time series, 

⇒ nm1=1000;)
⇒ data1=Table[(Sin[3i 0.01]+Sin[7i 0.01])/Sin[i 0.01],{i,1,1000}];)
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x̂i

x̂i

x̂i



⇒ →ListPlot[data1,Joined True]

See Fig. 3.53,

⇐

Fig. 3.53 Example time series where the independent variable usually time 

Employing the algorithm of the Gramian Angular Difference Field (GADF) see 
above, we get the image representation of the time series, see Fig. 3.54. 

⇒ tm=Table[i,{i,1,nm1}];)

⇒ im1=GADF[data1,tm]

⇐

Fig. 3.54 The image representation of the time series computed via Gramian Angular 
Difference Field (GADF) 

3.6.3  Comparing Two Time Series 

Let us modify our sample time series slightly, let us change the parameters 
p1 = 2.9997 instead of 3. and p2 = 7.0001 instead of 7 (Fig. 3.55). 

⇒ z=1000;p1=2.9997;p2=7.0001;p3=1;

⇒ data2=Table[(Sin[p1 i 0.01]+Sin[p2 i 0.01])/Sin[p3 i 0.01],

{i,1,z}];
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⇒ →ListPlot[data2,Joined True]

⇐

Fig. 3.55 The slightly modified time series 

Now, convert it into an image 
⇒ im2=GADF[data2,tm];

The two images are very similar (Fig. 3.56),
⇒ GraphicsGrid[{{im1,im2}}]

⇐

Fig. 3.56 The image representation of the two similar time series computed via Gramian 
Angular Difference Field (GADF). (In the first figure there are yellow short horizontal line in 

the red zones) 

Let us reduce the dimensions of the images dimension to 2 by employing 
Autoencoder technique, 

⇒ →reduced=DimensionReduce[{im1,im2},2,Method "AutoEncoder"];

In order to make the two images more distinguishable, let us change the blue
color into green in case of the second image (Figs. 3.57 and 3.58), 
im12={im1,ImageRecolor[im2,Blue Green]}⇒ →
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⇐

  
Fig. 3.57 The figure shows the representation of two times series computed from their image 

form after reducing the dimension 

ListPlot[MapThread[Labeled[#1,#2]&,{reduced,im12}],Frame True,

PlotStyle Red]

⇒ →
→

 

⇐

  
Fig. 3.58 The figure represents the two different time series in the two dimensional subspace of 

their image transformation 

It goes without saying that higher order dimensional reduction can be employed 
too. This technique can be used to classify as well as clustering time series. 
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Chapter 4 
Regression 
 
 
 
 
 
 
 
 
 
 
 
Regression is a method for understanding the relationship between independent 
variables or features and a dependent variable or outcome. Outcomes can then be 
predicted once the relationship between independent and dependent variables has 
been estimated. Regression is a field of study in statistics which forms a key part 
of forecast models in machine learning. It’s used as an approach to predict 
continuous outcomes in predictive modelling, so has utility in forecasting and 
predicting outcomes from data. Machine learning regression generally involves 
plotting a line of best fit through the data points. The distance between each point 
and the line is minimised to achieve the best fit line.   

Alongside  regression is one of the main applications of the supervised  type 
of machine learning.  Regression are predictive modelling problems. Supervised 
machine learning is integral as an approach in both cases, because classification 
and regression models rely on labelled input and output training data. The features 
and output of the training data must be labelled so the model can understand the 
relationship.  

Machine learning regression models are mainly used in predictive analytics to 
forecast trends and predict outcomes. Regression models will be trained to 
understand the relationship between different independent variables and an 
outcome. The model can therefore understand the many different factors which 
may lead to a desired outcome. The resulting models can be used in a range of 
ways and in a variety of settings. Outcomes can be predicted from new and unseen 
data, market fluctuations can be predicted and accounted for, and campaigns can 
be tested by tweaking different independent variables. 
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4.1  KNearest Neighbors Regression 

Basic Theory 

As pointed out in the previous chapter KNearest Neighbors can be employed for 
clustering as well as for regression. Basically the algorithm has the following 
steps: 

1. Consider the actual data point in the feature space, 
2. Compute its distances from every data point, 
3. Select the average of the KNearest neighbors, which forms the next 

predicted value. 
In the last step one may use weighted average, where the weights are the inverse 
distances. This means that the points are closer having stronger impact on the 
result of the prediction (Kanevski et al. 2009). 

Starting Python session in Mathematica, 
⇒

→
→ →

session=

StartExternalSession[<|"System" "Python",

"Version" "3.5.4","Executable"

"C:\Users\Ben\AppData\Local\Programs\Python\Python35\

python.exe"|>]//Quiet

 

⇐ ExternalSessionObject[  

 
 

4.1.1  Analysing KNeighbors Regressor 

We shall illustrate the effect of the number of neighbours on the prediction. First 
we illustrate that this method produces a non-smooth predictor. The training and 
test data for predicting a function = ( )y f X . 

Let us download a small data set from the Python repository and distribute it 
into training and test sets, 

  

import mglearn
X, y = mglearn.datasets.make_wave(n_samples=40)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train,
 y_test= train_test_split(X, y,random_state=0)

 

We assign these values to Mathematica variables ensuring their further usage in 
Mathematica, too 
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X_train  

{{0.085407},{1.85038},{-2.41397},{1.39196},{-0.35908},{0.645269},

{2.79379},{-1.17455},{-1.1723},{0.60669},{-1.72597},{-2.06403},

{0.14854},{-1.90905},{2.69331},{2.19706},{-2.60969},{2.70429},

{-1.80196

⇐

},{1.99466},{-1.9769},{-0.26358},{-2.6515},{-0.801829},

{-2.16304},{-1.25263},{1.24844},{1.1054},{0.591951},{-0.752759}}

 

Xtrain=%;⇒  

  
X_test  

{{-1.24713},{0.671117},{1.71106},{-2.06389},{-2.87649},

{-1.89957},{0.554487},{2.81946},{-0.40833},{-2.7213}}

⇐
 

Xtest=%;⇒  

  
y_train  

{0.697986,1.87665,-1.41502,0.779321,0.0939886,0.0352788,

0.868933,0.0844854,0.0945257,1.00032,-1.5137,-2.47196,

-0.527347,-1.67303,1.53708,1.49417,-0.47411,0.331226,

-1.13455,0.754188,-2.08582,-0.986181

⇐

,-1.52731,0.0975635,

-1.12469,-0.340907,0.229562,0.254389,0.0349788,-0.448221}

 

ytrain=%;⇒  

  
y_test  

{0.372991,0.217782,0.966954,-1.38774,-1.0598,

-0.90497,0.436558,0.778964,-0.541146,-0.956521}

⇐
 

ytest=%;⇒  

Mathematica 
Let us visualize these two sets. The training set 
training=Map[Flatten[#,1]&,Transpose[Join[{Xtrain,ytrain}]]];⇒  

The testing set 
test=Map[Flatten[#,1]&,Transpose[Join[{Xtest,ytest}]]];⇒  

Fig. 4.1 shows the data sets for training (green disk) and for test (red squares), 
p0=ListPlot[{training,test},PlotStyle {Green,Red},Frame True,

Axes None,PlotMarkers {Automatic,Large},AspectRatio 1]

⇒ → →
→ → →
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⇐   
Fig. 4.1 Data points of the training (green) and the test (red) sets in case of KNearest 

Neighbors Regression 

Employing k = 3 neighbors, the prediction function f  is, 
datatraining=Flatten[Xtrain] Flatten[ytrain];⇒ →  
f=Predict[datatraining,Method {"NearestNeighbors",

"NeighborsNumber" 3},PerformanceGoal "Quality"]

⇒ →
→ →  

⇐ PredictorFunction
 

The predictor function can be seen in Fig. 4.2, which shows clearly that the 
predictor function provides local, stepwise approximation. 
Show[{p0,Plot[f[x],{x,-3,3},PlotStyle {Thin,Blue}]}]⇒ →

 

⇐   
Fig. 4.2 The predictor function with KNearest Neighbors Regression using k = 3 neighbors 

The prediction error on the test set can be visualized, see Fig. 4.3. 
ftest=PredictorMeasurements[f,Flatten[Xtest] ytest];⇒ →  
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ftest["ComparisonPlot"]⇒  

⇐   
Fig. 4.3 Prediction error on the test set using k = 3 neighbors 

 
It is usual to measure the effectivity of the predictor function  f(X), computing 

the score of the predictor, 

( )
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The closer the score to 1.00 the better the prediction. This can be computed 
for the training as well as for the test set. 

In our case for the test set, 
2u=Total[Map[ ,ytest-Map[f[ ] ,Flatten[Xtest# & # ]& ]]]⇒  

1.08677⇐  

and 
2v=Total[Map[ ,ytest-Mean[yte# & st]]]⇒  

6.56328⇐  

Therefore the score for the test set 

1-u/v⇒  
0.834417⇐  

similarly for the training set, 
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2u=Total[Map[ ,ytrain-Map[f[ ] ,Flatten[Xtrain# & # ]& ]]]⇒  
6.32668⇐  

and 
2v=Total[Map[ ,ytrain-Mean[ytrai ]# & n]]⇒  

35.0381⇐  

Then the score for the training set 

1-u/v⇒  
0.819434⇐  

The two scores are close to each other, so the prediction is proper. 

Python 
Loading the procedure, and using prediction with k = 3 on the training set (Singh 
2018), 

  

from sklearn.neighbors import KNeighborsRegressor
reg=KNeighborsRegressor(n_neighbors=3).fit(X_train,y_train)
prediction=reg.predict(X_test)
prediction

 

{-0.0539654,0.35686,1.13672,-1.89416,-1.13881,

-1.63113,0.35686,0.912414,-0.446804,-1.13881}

⇐  

The results are the same as those of the Mathematica 
Map[f[#] &, Flatten[Xtest]]⇒  
{-0.0539654,0.35686,1.13672,-1.89416,-1.13881,

-1.63113,0.35686,0.912414,-0.446804,-1.13881}

⇐  

Now let us compute the scores (Chen and Shah, 2018). 

  

print("Training set score: {:.2f}".
 format(reg.score(X_train, y_train)))
print("Test set score: {:.2f}".
 format(reg.score(X_test, y_test)))

 

Training set score: 0.82  
Test set score: 0.83  

Now we shall study the effect of the number of neighbors on the prediction 
quality. Here we compute the test and training scores for neighbors k = 1 and 
k = 9. 

Mathematica 
First using k = 1, we get a simple stepwise approximation, where every data point 
belongs the belonging to the predictor function, see Fig. 4.4 
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f=Predict[datatraining,Method {"NearestNeighbors",

"NeighborsNumber" 1},PerformanceGoal "Quality"]

⇒ →
→ →  

⇐ PredictorFunction
 

Show[{p0,Plot[f[x],{x,-3,3},PlotStyle {Thin,Blue}]}]⇒ →

 

⇐   
Fig. 4.4 The prediction with KNearest Neighbors Regression with k = 1 neighbor 

In this case there is no error on the training set, so its score is 1. 
The score on the test set 

2u=Total[Map[ ,ytest-Map[f[ ] ,Flatten[Xtest# & # ]& ]]]⇒  
4.25309⇐  

and 
2v=Total[Map[ ,ytest-Mean[yte# & st]]]⇒  

6.56328⇐  

Then 

1-u/v⇒  
0.351987⇐  

Now for k = 9, 
f=Predict[datatraining,Method {"NearestNeighbors",

"NeighborsNumber" 9},PerformanceGoal "Quality"]

⇒ →
→ →  

⇐ PredictorFunction
 

The result can be seen in Fig. 4.5, which indicates that the increase of k value 
can somewhat "smoothen" the predictor function. 
Show[{p0,Plot[f[x],{x,-3,3},PlotStyle {Thin,Blue}]}]⇒ →  
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⇐   
Fig. 4.5 The prediction with KNearest Neighbors using k = 9 neighbor 

Score on the test set 
2u=Total[Map[ ,ytest-Map[f[ ] ,Flatten[Xtest# & # ]& ]]]⇒  

2.27008⇐  

and 
2v=Total[Map[ ,ytest-Mean[yte# & st]]]⇒  

6.56328⇐  

Then 

1-u/v⇒  
0.654124⇐  

similarly for the training set, 
2u=Total[Map[ ,ytrain-Map[f[ ] ,Flatten[Xtrain# & # ]& ]]]⇒  

9.51641⇐  

and 
2v=Total[Map[ ,ytrain-Mean[ytrai ]# & n]]⇒  

35.0381⇐  

Then the score for the training set 

1-u/v⇒  
0.728399⇐  

So we have a slight over fitting again, however, the values of the scores are 
lower than in the case of k = 3. 

Python 
Employing Python, we get the same results. For k = 1, 
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reg=KNeighborsRegressor(n_neighbors=1).fit(X_train,y_train) 

  

print("Training set score: {:.2f}".
 format(reg.score(X_train, y_train)))
print("Test set score: {:.2f}".
 format(reg.score(X_test, y_test)))

 

Training set score: 1.00  
Test set score: 0.35  

For k = 9, 

  
reg=KNeighborsRegressor(n_neighbors=9).fit(X_train,y_train) 

  

print("Training set score: {:.2f}".
 format(reg.score(X_train, y_train)))
print("Test set score: {:.2f}".
 format(reg.score(X_test, y_test)))

 

Training set score: 0.73  
Test set score: 0.65  

4.1.2  Surface Reconstruction 

Let us consider a simple surface reconstruction problem. 
We consider a general second order surface, see Fig. 4.6. 

⇒ 2 2t[x_,y_]:=ax+b cx +dx+ y+eyy  

Employing specific parameter values, we create synthetic data set, 
p1=Plot3D[t[x,y]/.{a 1,b->11,c 3,d -4,

e -1},{x,-10,10},{y,-10,10},Mesh 8,ColorFunction Hue,

MeshShading {{Yellow,Orange},{Pink,Red}},BoxRatios {1,1,1}]

⇒ → → →
→ → →

→ →  
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⇐   
Fig. 4.6 Original surface 

Let us employ measured function data values on a [−10,10]×[−10, 10] region 
of [x, y] raster with normal random error N(0,30). The error histogram can be seen 
in Fig. 4.7. 
Lerror=RandomVariate[NormalDistribution[0,30],{21,21}];⇒  
Histogram[Flatten[Lerror,1]]⇒  

⇐   
Fig. 4.7 Histogram of the random error 

Then the “measured” data are 
dataPoints=Flatten[Table[{i,j,Lerror[[i+11,j+11]]+t[i ,j]/.

{ 1,b 11,c 3,d -4,e -1}},{i,-10,10},{j,-10,10}],1];

⇒
→ → → → →  

   Figure 4.8 shows the generated noisy data points with the original surface, 
p2=ListPointPlot3D[dataPoints,BoxRatios {1, 1, 1},

PlotStyle Blue];

⇒ →
→

 

Show[{p1,p2}]⇒  
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⇐   
Fig. 4.8 Data values 

Now, let us reconstruct the original surface on bases of these noisy data points. 
In order to employ linear model we transform the variables, 

⇒ 2 2transform[r_,s_]={r,s,r s,r ,s} 
⇐ 2 2{r,s,rs r ,s, } 

Instead of using a nonlinear model with two variables, therefore, we now have 
a linear model with five variables. Using Mathematica, the training data set is 
ySet=Table[transform[i,j],{i,-10,10},{j,-10,10}];⇒  
trainingdata=

MapThread[#1 #2[[3]]&,{Flatten[ySet,1],dataPoints}];

⇐
→

 

trainingdata[[1]]⇒  
{-10,-10,100,100,100} -303.836⇐ →  

Let us now employ the KNearest Neighbors Regression with k = 3, 
c=Predict[trainingdata,

Method {"NearestNeighbors","NeighborsNumber" 3}]

⇒
→ →  

⇐ PredictorFunction
 

This function can be applied to the original data set, for example 
c[transform[1,1]]⇒  
20.1957⇐  

Figure 4.9 shows the approximated surface, 
p3=Plot3D[c[transform[x,y]],{x,-10,10},{y,-10,10},

BoxRatios {1, 1, 1}]

⇒
→
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⇐   
Fig. 4.9 KNearest Neighbors approximation 

We can compare the approximation and the original surface, see Fig. 4.10. 
Show[{p1,p3}]⇒  

⇐   
Fig. 4.10 KNearest Neighbors Regression approximation and the original surface 

The histogram of the error distribution of the approximation can be seen in 
Fig. 4.11. 
error=Table[(t[x,y]/.{a 1,b 11,c 3,d -4,e -1})-

c[transform[x,y]],{x,-10,10},{y,-10,10}];

⇒ → → → → →  

Histogram[Flatten[Error,1]]⇒  
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⇐   
Fig. 4.11 Approximation error of the KNearest Neighbors Regression method in case of k = 3 

Remark 

The surface can be smoothed by convolution. 

4.2  Linear Regression Models 

Basic Theory 

Let us assume that we have observations 1 2{ , , . . . , }ny y y  from a random 
variable Y which we want to predict, based on the observed values 

11 21 ,1 12 22 ,2 1 2 ,{{ , , , }, { , , , },  , { , , , }}n n p p n px x x x x x x x x , from p 

independent explanatory random variables 1 2{ , , . . . , }pX X X . Our initial 
assumption is that the Xi are independent. The problem in matrix form is 
represented as: 

y Xβ =   +  . 

Then one needs to minimize the following objective, 

( )22

=1 =1

1 1=
n n

i i i
i i

y βX
n n

−∑ ∑  

to find the coefficients β. This technique is the Ordinary Least Square (OLS) and 
can be derived from the maximum  likelihood method assuming that ϵi has a 
normal distribution with zero mean. Using OLS, difficulties begin to emerge 
when the assumption of independence no longer applies. Employing Machine 
Learning vocabulary over learning may occur and it can be cured via 
regularization. We attempt to deal with the problems by introducing a penalty 
component to the OLS objective function. The idea is to penalize the regression 
for using too many correlated explanatory variables, as follows (Zelesny 2016): 
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In case of λ = 0 we have Ordinary Least Square, otherwise, λ > 0, and 
if α = 0 then Ridge Regression (L2 -norm  regularization) 
if α = 1 then Lasso Regression (L1 - norm regularization) 
if (0,1)α ∈  then Elastic Net Regression (L2 and L1 norm mixed regularization) 

Practically and generally, it means that we try to restrict the gradient of the 
fitted function. 

4.2.1  Small Data Set 

Let us employ the earlier small data set, but now with 60 elements, splitting into 
training and test set, 

  

import mglearn
from sklearn.model_selection import train_test_split
X, y = mglearn.datasets.make_wave(n_samples=60)
X_train, X_test, y_train,
 y_test= train_test_split(X, y,random_state=0)

 

Let us save these sets for Mathematica, too 

  
X_train  

{{2.45592},{-1.89087},{2.19706},{-1.90905},{-2.60969},{2.81751},

{-2.7213},{-2.79367},{0.5874},{-0.40833},{-2.46904},{0.0854066},

{-1.89957},{-2.06403},{-1.97686},{-1.17455},{1.6508},{0.671117},

{2.6369

⇐

9},{0.60669},{-1.72597},{1.71106},{-2.41397},{0.148539},

{0.975134},{0.280262},{-1.8241},{1.1054},{2.70429},{1.99466},

{-1.12973},{-0.26358},{-2.6515},{-0.801829},{-1.17232},

{-2.16304},{-1.25263},{1.24844},{-0.359085},{2.53125},

{0.591951},{-0.752759},{2.36896},{0.120408},{-1.44732}}

 

Xtrain=%;⇒  

  
X_test  
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{{-1.80196},{1.85038},{-1.04802},{0.554487},{2.81946},

{1.39196},{2.79379},{-2.72864},{-2.26777},{-1.24713},

{-2.06389},{-2.87649},{0.645269},{-0.0289385},{2.69331}}

⇐

 

Xtest=%;⇒  

  
y_train  

{1.19813,-1.58832,1.2032,-1.27708,-0.83685,0.731414,-0.08137,

-0.447131,0.652134,-1.25636,-1.72409,0.979232,-0.945758,

-2.37365,-1.07676,-0.326911,0.250925,0.962506,1.01581,0.292629,

-1.30838,0.799001,-

⇐

0.913907,0.261344,0.400123,0.239382,

-1.54665,0.812638,0.500159,1.07384,-0.025655,-0.385754,

-0.701173,0.13369,-0.196128,-0.752409,-0.746469,0.449716,

-0.934165,0.826142,1.17396,-1.18073,1.28948,0.77614,-0.751506}

 

ytrain=%;⇒  

  
y_test  

{-1.11948,0.381098,-0.491317,0.658232,1.39516,

0.137729,0.950818,-1.03732,-1.71132,-0.178514,

-1.32036,-0.486472,-0.721426,-0.323096,0.709459}

⇐

 

ytest=%;⇒  
Then let us visualize these two sets, see Fig. 4.12. 
training=Map[Flatten[#,1]&,Transpose[Join[{Xtrain,ytrain}]]];⇒  
test=Map[Flatten[#,1]&,Transpose[Join[{Xtest,ytest}]]];⇒  
p0=ListPlot[{training,test},PlotStyle {Green,Red},Frame True,

Axes None,PlotMarkers {Automatic,Large},AspectRatio 1]

⇐ → →
→ → →

 

⇐   
Fig. 4.12 Data points of the training (green) and the test (red) sets 
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Mathematica 
To fit a regression line we use Mathematica’s simple LinearModelFit function 

lm=LinearModelFit[training,x,x];⇒  
model=lm//Normal⇒  
-0.0171112+0.441537 x⇐  

Both forms can be employed for computing the approximating values of the 
model parameters, 

lm[0]⇒  
-0.0171112⇐  

or 

⇒ →model/.x 0  
-0.0171112⇐  

Alternatively, one may also employ Mathematica’s general prediction model 
datatraining=Flatten[Xtrain] Flatten[ytrain];⇒ →  
plm=Predict[datatraining,Method "LinearRegression"]⇒ →  

⇐ PredictorFunction
 

The parameters of the linear model are:  

the interception, 
plm[0]⇒  
-0.0193265⇐  

and the coefficient, 
plm[1]-plm[0]⇒  
0.431938⇐  

More simple way, as a pure function, 
PredictorInformation[plm,"Function"]⇒  
-0.0193265+0.431938 #1&⇐  

Python 
Employing Python, we load the model and carry out the prediction (VanderPlas 
2016), 

  
from sklearn.linear_model import LinearRegression
lr=LinearRegression().fit(X_train,y_train))  

The parameters are 
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print(lr.coef_) 

[0.44153666]⇐  

  
print(lr.intercept_) 

-0.01711124414733381⇐  

Predicted output from input for example at x = 0.1, 

  
po=lr.predict(0.1)
po  

{0.0270424}⇐  

The output can be assigned to a Mathematica variable, 

s=%;⇒  

and verified 

lm[0.1]==First[s]⇒  
True⇐  

Let us visualize the linear model with the data points, see in Fig. 4.13 
Show[{p0,Plot[model,{x,-3,3}]}]⇒  

⇐   
Fig. 4.13 Fitted linear model using ordinary least square 

Comparing the efficiency (score) on the training and test set, 

  

print("Training set score: {:.2f}".
 format(reg.score(X_train, y_train)))
print("Test set score: {:.2f}".
 format(reg.score(X_test, y_test))))

 

Training set score: 0.66  
Test set score: 0.69  
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Compare the data with the predicted values and look at the standard deviation, 
see Fig. 4.14. 
Show[{p0,Plot[{

 plm[x],

 plm[x]+StandardDeviation[plm[x,"Distribution"]],

 plm[x]-StandardDeviation[plm[x,"Distribution"]]},

{x,-3,3},

PlotStyle {Blue,Gray,Gray},

Filling {2 {3}},

Exclusions False,

Performa

⇒

→
→ →

→
nceGoal "Speed",

 PlotLegends {"Prediction","Confidence Interval"}]}]

→
→

 

⇐   
Fig. 4.14 Fitted linear model with the standard error as confidence interval 

Statistical analysis of the model parameters, see, Table 4.1 
lm[{"ParameterConfidenceIntervalTable"},ConfidenceLevel->.99][[1]]⇒

 

 
Table 4.1 Statistics of the linear model 

 Estimate Standard Error Confidence Interval 
1 −0.0171112 0.0854872 {−0.247508,  0.213285} 
x   0.4415370 0.0484137 {  0.311057,  0.572016} 

4.2.2  Generalization of the Ordinary Least Square (OLS) 
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When the dimension of the feature vector is high, then OLS may perform badly. 
Now we load the Boston houses data from the Python repository (Sargent and 
Stachurski 2017), 

  

import mglearn
import numpy as np
from sklearn.model_selection import train_test_split
X, y = mglearn.datasets.load_extended_boston()
X_train, X_test, y_train, y_test=
 train_test_split(X, y,random_state=0)

 

  
X_train  

 
Save these data for Mathematica, 

Xtrain=%;⇒  
Dimensions[Xtrain]⇒  

⇐ {379,104}  

The training set 

  
np.savetxt('M:\\daTaXtrain.txt',X_train,fmt='%.5e') 

XtrainT=Import["M:\\daTaXtrain.txt","Table"];⇒  
Dimensions[XtrainT]⇒  
{379,104}[⇐  

  
np.savetxt('M:\\daTaytrain.txt',y_train,fmt='%.5e')

 

ytrain=Import["M:\\daTaytrain.txt","Table"];⇒

 
The test set 

  
np.savetxt('M:\\daTaXtest.txt',X_test,fmt='%.5e')

 

Xtest=Import["M:\\daTaXtest.txt","Table"];⇒

   
np.savetxt('M:\\daTaytest.txt',y_test,fmt='%.5e')

 

ytest=Import["M:\\daTaytest.txt","Table"];  
In this case the number of the features (the dimension of the input vector) 
Length[XtrainT[[1]]]⇒  
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104⇐  

and we have 
Length[XtrainT]⇒  
379⇐  

elements in the training and 
Length[Xtest]⇒  
127⇐  

elements in the test set. 

Python 
Let us try to employ OLS regression 

  
from sklearn.linear_model import LinearRegression
lr=LinearRegression().fit(X_train,y_train)

 

Now the coefficient vector contains 104 elements 

  
lr.coef_

 

{-402.752,-50.071,-133.317,-12.0021,-12.7107,28.3053,54.492,

-51.7339,25.2603,36.4991,-10.1039,-19.6289,-21.3677,14.6474,

2895.05,1510.27,117.995,-26.5658,31.2488,-31.4464,45.2536,

143.234,-15.6741,-14

⇐

.9732,-28.613,-31.252,24.5648,-17.8048,

4.03508,1.71068,34.4735,11.2186,1.14302,3.73717,31.3846}

 

coeffOLS=%;⇒  

  
lr.intercept_

 

31.6452⇐  
⇐ interceptOLS=%;  

  

print("Training set score: {:.2f}".
 format(lr.score(X_train, y_train)))
print("Test set score: {:.2f}".
 format(lr.score(X_test, y_test)))

 

Training set score: 0.95  
Test set score: 0.61  

Mathematica 
Let us solve the problem employing Mathematica, too. 
training=Map[Flatten[#,1]&,Transpose[Join[{XtrainT,ytrain}]]];⇒  
test=Map[Flatten[#,1]&,Transpose[Join[{Xtest,ytest}]]];⇒  
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Dimensions[XtrainT]⇒  
{379,104}⇐  

Dummy vector for the input variables of the model, 
xx=Table[Subscript[x, i],{i,1,104}];⇒  
lm=LinearModelFit[training,xx,xx];⇒  

 
The design matrix is rank deficient, therefore the problem is ill-conditioned.  

model=lm//Normal⇒  
1 2 3 4 5

6 7 8 9 10 11

12 13 14 15 16 17

94

{31.6407-402.622 -50.0681 -133.298 +18.1894 -12.7088 +

28.3039 +54.4875 -51.726 +25.2658 +36.4825 -10.1001 -

19.6246 -21.3651 +14.6492 +2894.85 +1509.1 +118.007 -

28.6087 -31

x x x x x

x x x x x x

x x x x x x

x

⇐

95 96 97 98 99

100 101 102 103 104

.2507 +24.5645 -17.7924 +4.03026 +1.71074 +

34.4687 +11.2162 +1.1435 +3.73481 +31.3843 }

x x x x x

x x x x x

 

This problem can be cured by employing regularization. There are L2 (ridge 
regression), L1 (Lasso regression) regularization and the combination of these 
two (Elastic net regression). 

4.2.3  Ridge Regression 

In order to introduce L2 regularization, we employ ridge regression with Python, 
which employs regularization parameter alpha, which has default value 1alpha =
. This alpha corresponds to λ used in the definition in Sect. 4.2.  

Python 

  
from sklearn.linear_model import Ridge
ridge=Ridge().fit(X_train,y_train)

 

The model coefficients, 

  
ridge.coef_
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{-1.45195,-1.55626,-1.4585,-0.128253,-0.0852752,8.3226,0.254138,

-4.94126,3.90318,-1.05389,-1.58274,1.02803,-4.0136,0.436959,

0.00361746,-0.874004,0.745133,-1.48861,-1.67522,-1.44622,

1.82299,1.97807,1

⇐

.82834,-7.13688,1.10266,1.42156,-1.31292,

-6.76976,1.82608,-2.35757,0.0345818,1.19002,-6.29852,10.3651}

 

coeffRidge=%;⇒  

  
ridge.intercept_

 

21.4172⇐  
interceptRidge=%;⇒  

Comparing the score of the training and test set 

  

print("Training set score: {:.2f}".
 format(ridge.score(X_train, y_train)))
print("Test set score: {:.2f}".
 format(ridge.score(X_test, y_test)))

 

Training set score: 0.89  
Test set score: 0.75  

 
There is a considerable improvement, since the training score and test score 

are closer to each other, than earlier, see Sect. 4.2.2. 
Let us increase the regularization parameter. Employing ridge regression for 

alpha = 10. 

  
from sklearn.linear_model import Ridge
ridge10=Ridge(alpha=10).fit(X_train,y_train)

 
  
ridge10.coef_

 

{-0.81369,0.647624,-0.809069,0.311198,-0.685926,4.38593,-0.147446,

-2.44272,0.846353,-1.14693,-2.33239,1.0695,-3.98476,-0.596589,

0.00293204,-0.522603,0.140364,-0.647905,-0.76348,-0.749429,

0.627694,0.

⇐

235255,1.33926,-1.88592,0.392763,-0.442962,-0.451262,

-2.05805,-1.49556,-1.76754,-2.03784,1.08037,-3.94939,0.142122}

 

coeffRidge10=%;⇒  

  
ridge10.intercept_

 

25.0084⇐  
interceptRidge10=%;⇒  

  

print("Training set score: {:.2f}".
 format(ridge10.score(X_train, y_train)))
print("Test set score: {:.2f}".
 format(ridge10.score(X_test, y_test)))
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Training set score: 0.79  
Test set score: 0.64  

Let us display the coefficients of the different regressors, OLS, Ridge 
Regression with alpha =1 and alpha = 10, see Fig. 4.15, 
p1=ListPlot[{coeffOLS,coeffRidge,coeffRidge10},

PlotStyle {Green,Red,Blue},Frame True,Axes None,

PlotMarkers {Automatic},AspectRatio 0.7,

PlotRange {-30,30}]

⇒
→ → →

→ →
→

 

⇐   
Fig. 4.15 The coefficients of the different regressors, 

OLS (green), Ridge with alpha = 1 (red) and Ridge with alpha = 10 (blues) 

It can be clearly seen, that Ridge Regression keeps the value of coefficients in 
the narrowest interval. 

In Mathematica for ridge regression one can use L2 regularization directly, 
however the magnitudes of regularization parameters in Python and Mathematica 
are not consistence. To get similar result, one should use much higher value in 
Mathematica than in Python. 

Mathematica 
The training set 
ytrain=Flatten[ytrain];⇒  
datatraining=MapThread[#1 #2&,{XtrainT,ytrain}];⇒ →  
pr=Predict[datatraining,

Method {"LinearRegression","L2Regularization" 900}]

⇒
→ →  

PredictorFunction[⇐  
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Score for training set, 
2u=Total[Map[ ,ytrain-Map[pr[ ] ,Xtrain# & # & T]]]⇒  

7775.53⇐  

and 
2v=Total[Map[ ,ytrain-Mean[ytrai ]# & n]]⇒  

32331.8⇐  

Then the score for the training set 

1-u/v⇒  
0.759509⇐  

for test set, 
ytest=Flatten[ytest];⇒  

2u=Total[Map[ ,ytest# & # &-Map[pr[ ] ,Xtest]]]⇒  
3972.83⇐  

and 
2v=Total[Map[ ,ytest-Mean[yte# & st]]]⇒  

10375.8⇐  

Then the score for the test set 

1-u/v⇒  
0.617105⇐  

These scores are close to that of the Python (alpha =10), namely (0.79 and 
0.64). 

The model parameters, 
prI=PredictorInformation[pr,"Function"];⇒  
coeffT=Sort[Map[Reverse[#]&,Partition[Most[

Cases[prI,_?NumberQ,Infinity]],2]],#1[[1]]<#2[[1]]&];

⇒
 

coeff=Drop[coeffT,{1,1}]⇒  
{{1,-0.81873},{2,0.386539},{3,-0.412599},{4,0.2587},{5,-0.466501},

{6,4.71972},{7,-0.2042},{8,-0.674577},{9,0.12333},{10,-0.263636},

{11,-1.32976},{12,0.672956},{13,-2.15085},{14,-0.652742},

{96,-0.317

⇐

175},{97,-0.0253841},{98,-1.32674},{99,-1.09009},

{100,-0.7421},{101,-2.02978},{102,0.568134},{103,-2.19772}}  
The intersection values, 

intersect=Total[coeffT[[1]]]⇒  
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25.3369⇐  

It means Mathematica with L2 regularization = 900 gives similar result as 
Python with alpha =10. However some coefficients are fairly different, see Fig. 
4.16.  
p1P=ListPlot[{coeffRidge10},PlotStyle {Blue},Frame True,

Axes None,PlotMarkers {Automatic},AspectRatio 0.7,

PlotRange {-10,10}];

⇒ → →
→ → →

→

 

Show[{p1P,ListPlot[Drop[coeff,{1,1}],PlotStyle Brown,

Frame True,Axes None,PlotMarkers

AspectRatio 0.7,PlotRange {-10,10}]}]

⇒ →
→ → →

→ →

 

⇐   
Fig. 4.16 The coefficients of the Mathematica’s Ridge = 900 Brown (▼) 

and Python Ridge = 10 Blue (▼) 

4.2.4  Lasso Regression 

We have seen that Lasso Regressions employs L1 regularization. Now let us 
employ it using Python code, 

Python 

  
from sklearn.linear_model import Lasso

 
  
lasso=Lasso().fit(X_train,y_train)
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print("Training set score: {:.2f}".
 format(lasso.score(X_train, y_train)))
print("Test set score: {:.2f}".
 format(lasso.score(X_test, y_test)))

 

Training set score: 0.29  
Test set score: 0.21  

The result is quite bad. Let us decrease from alpha = 1 down to alpha = 0.01 
and simultaneously set max_iter = 10000. 

  
lasso=Lasso(alpha=0.01,max_iter=100000).fit(X_train,y_train))

 
  

print("Training set score: {:.2f}".
 format(lasso.score(X_train, y_train)))
print("Test set score: {:.2f}".
 format(lasso.score(X_test, y_test)))

 

Training set score: 0.90  
Test set score: 0.77  

The coefficients of the linear model are 

  
lasso.coef_ 

 

{0.,0.,0.,0.,0.,0.,0.,-1.30684,10.9466,0.,0.,0.,-0.315327,0.,0.,

0.,0.,0.,0.,0.,0.,-8.91227,0.,0.,0.,0.,2.09534,0.,0.,0.,0.,0.,

0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,-4.0825,0.,6.66788,0.,0.,0.,

0.,-4.40105,

⇐

-2.1055,3.7759,0.,4.3838,0.,0.,0.18662,0.,-1.17594,

-4.29006,0.,0.,-2.21607,0.,-1.8821,0.,0.,29.7405,-2.08168,0.,

-12.0013,-11.1479,-11.6601,13.1169,-11.1537,0.,0.,3.47563,0.,

0.,0.,-8.5663,0.,0.,0.,0.,-7.38806,0.,0.,1.00758,0.,0.,-7.5907,

1.61169,0.,0.,-17.4313,0.,0.,0.,0.28683,-8.15767,17.4965}

 

c=%;⇒  
The number of the non-zero coefficients is, 
Select[c,#!=0.&]//Length⇒  
33⇐  

Let us compare the magnitudes of the coefficients of the regression model with 
alpha = 10 and Lasso regression model above, see Fig. 4.17 
Show[{p1P,ListPlot[Drop[c,{1,1}],PlotStyle Brown,Frame True,

Axes None,PlotMarkers "\[FilledDownTriangle]",

AspectRatio 0.7,PlotRange {-20,20}]}]

⇒ → →
→ →

→ →
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⇐   
Fig. 4.17 The coefficients of the Python Lasso Regression, Brown (▼) and Python alpha = 10 

Blue (▼) 

One can see that Lasso Regression (L1 regularization) eliminates most of the 
coefficients. From 104 coefficients only 33 which are non-zero, see Fig. 4.17. 
However the absolute value of these non-zero coefficients are higher than in case 
of alpha = 10 regression. 

Mathematica 
Now let us try Mathematica with direct L1 regularization 
pL=Predict[datatraining, Method {"LinearRegression",

"L1Regularization" 10},PerformanceGoal "Quality",

TimeGoal 60]

⇒ →
→ →

→
 

PredictorFunction[⇐  

 

Score for training set, 
2u=Total[Map[ ,ytrain-Map[pL[ ] ,Xtrain# & # & T]]]⇒  

5059.41⇐  

and 
2v=Total[Map[ ,ytrain-Mean[ytrai ]# & n]]⇒  

32331.8⇐  

Then the score for the train set 

1-u/v⇒  
0.843516⇐  
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for test set, 
ytest=Flatten[ytest];⇒  

2u=Total[Map[ ,ytest# & # &-Map[pL[ ] ,Xtest]]]⇒  
2569.9⇐  

and 
2v=Total[Map[ ,ytest-Mean[yte# & st]]]⇒  

10375.8⇐  

Then the score for the test set 

1-u/v⇒  
⇐ 0.710339  

These values are somewhat worse than those of Python (0.9 vs. 0.84 and 0.77 
vs. 0.71). 

Let us see the coefficients. 
⇒ f=Information[pL,"Function"] 
⇐ 23.5728+3.18472#6-0.304832#8+0.000527495#9-0.191188#11-

2.00723#13+53.8063#17-19.0575#21+0.00832541#27+0.16029#31-

11.2083#38-5.24492#44+0.000561929#45+0.745482#55+0.58123#57-

0.0175075#60-0.133877#61-0.425707#63-0.0774075#66-4.20621#68+

27.9787#69-3.19814#73-11.3455#74+3.25528#75-37.2008#76-

1.6242#78-1.91935#83-0.478329#84-0.842248#86-1.34194#87-

0.603847#88+0.000478878#90+0.000330873#91+0.000244214#92+

0.236073#93-2.79445#98-0.285828#103+3.25104#104&

 

⇒ coeffT=Sort[Map[Reverse[#]&,

Partition[Most[Cases[f,_?NumberQ,Infinity]],2]],

#1[[1]]<#2[[1]]&];
 

coeff=Drop[coeffT,{1,1}]⇒  
⇐ {{-19.0575,17},{-11.3455,73},{-11.2083,31},{-5.24492,38},

{-4.20621,66},{-3.19814,69},{-2.79445,93},{-2.00723,11},

{-1.91935,78},{-1.6242,76},{-1.34194,86},{-0.842248,84},

{-0.603847,87},{-0.478329,83},{-0.425707,61},{-0.304832,6},

{-0.285828,98},{-0.191188,9},{-0.133877,60},{-0.0774075,63},

{-0.0175075,57},{0.000244214,91},{0.000330873,90},

{0.000478878,88},{0.000527495,8},{0.000561929,44},

{0.00832541,21},{0.16029,27},{0.236073,92},{0.58123,55},

{0.745482,45},{3.18472,23.5728},{3.25104,103},{3.25528,74},

{27.9787,68},{53.8063,13}}

 

intersect=Total[coeffT[[1]]]⇒  
⇐ 37.7992  

Now we have somewhat more (37 >33) non-zero coefficients 
Length[coeffT]⇒  
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⇐ 37  

But a few of them are quite small, 
Select[coeffT,Abs[#[[2]]]>0.001&]//Length⇒  
36⇐  

4.2.5  Elastic Net Regression 

Mathematica 
The Elastic-Net Regression is a combination of the Ridge and the Lasso 
Regression. In Mathematica we employ L2 and L1 regularization simultaneously. 
prL=Predict[datatraining,Method {"LinearRegression",

"L2Regularization" 900,"L1Regularization" 0.06,

"OptimizationMethod" "OrthantWiseQuasiNewton"},

PerformanceGoal "Quality"]

⇒ →
→ →

→
→

 

PredictorFunction[⇐  

 

Score for training set, 
2u=Total[Map[ ,ytrain-Map[prL[ ] ,Xtrain# & # & T]]]⇒  

8806.36⇐  

and 
2v=Total[Map[ ,ytrain-Mean[ytrai ]# & n]]⇒  

32331.8⇐  

Then the score for the train set 

1-u/v⇒  
0.727625⇐  

for test set, 
ytest=Flatten[ytest];⇒  

2u=Total[Map[ ,ytest# & #-Map[prL[ ] ,Xte& st]]]⇒  
3731.26⇐  

and 
2v=Total[Map[ ,ytest-Mean[yte# & st]]]⇒  

10375.8⇐  

Then the score for the test set 
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1-u/v⇒  
0.640388⇐  

and the coefficients 
f=PredictorInformation[prL,"Function"]⇒  
coeff=Select[Norm/@Most[Cases[f,_?NumberQ,Infinity]],

Head[#]==Real&]

⇒
 

-308{25.5063,0.0439521, 0.848023,0.26222,0.43368,0.26408,

0.398289,4.52831,0.260777,0.599958,0.051432,0.268433,1.16701,

0.565828,1.88054,0.604317,518.553,1.29274,14.1373,1.74552,

2.22507×1

0.03875 0

0

.

,

09,

⇐

257668,0.694943,0.0950763,0.347543,0.0770126,

1.12994,1.00366,0.640493,1.85389,0.478793,1.90365,1.05287}

 

Python 
Now we employ Elastic Net Regression in Python, namely a special variant of it 
using cross validation technique (ElasticNetCV). 

  

import mglearn
X, y = mglearn.datasets.load_extended_boston()
from sklearn.model_selection import train_test_split
X_train, X_test, y_train,
 y_test= train_test_split(X,y,random_state=0)
from sklearn.linear_model import ElasticNetCV
regr=ElasticNetCV(cv=5,max_iter=10000,
 random_state=0).fit(X_train,y_train)    
regr.coef_

 {-1.54547,-1.77251,-1.27239,0.,0.,9.04924,0.,-5.29649,5.07603,

-0.310374,-0.695627,0.514146,-3.55111,0.,0.,-0.532312,0.161229,

-1.44735,-1.1207,-1.5445,0.,-2.01746,-1.56299,-1.34282,-1.24166,

0.,1.2941

⇐

2,1.92353,2.27019,1.3436,-8.46854,0.657055,1.29418,

-1.13382,-8.34995,1.80211,-1.95155,0.,1.2551,-6.57106,12.9617}

 

The non-zero coefficients are, 

coeffs=%;⇒  
Select[coeffs,Abs[#]>0.001&]//Length⇒  
86⇐  

  
regr.intercept_

 

20.5038⇐  

The scores are 
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print("Training set score: {:.2f}".
 format(regr.score(X_train, y_train)))
print("Test set score: {:.2f}".
 format(regr.score(X_test, y_test)))

 

Training set score: 0.89  
Test set score: 0.76  

In this case Python seems to be better than Mathematica, and for Python Lasso 
provides somewhat higher scores than Elastic Net. 

4.2.6  Stitching Images 

In image processing, a frequent problem is the geometrical transformation of 
images. To do that one needs a transformation model with known parameters. 
Often we have to determine the parameters of the model from the coordinates of 
corresponding points. As an illustration, let us consider two images, that we want 
to stitch together, see Fig. 4.18. 

⇒  i1= ; i2= ; 

Fig. 4.18 The images to be stitched 

Let us find corresponding points of the two images, see Fig. 4.19. Using 
Mathematica built in function 

⇒ →z = ImageCorrespondingPoints[i1, i2,MaxFeatures 15] 
⇐ {{{227.711,146.822},{258.595,167.002},{201.128,98.6972},

{195.17,157.643},{197.124,132.347},{230.874,129.912},

{264.313,140.17},{248.203,132.659},{246.535,97.1216},

{176.331,112.359}},

{{92.2366,154.393},{122.395,169.871},{62.6775,110.729},

{59.3557,169.953},{60.2872,142.867},{93.5135,137.431},

{125.084,144.26},{110.181,138.568},{107.16,104.919},

{35.2501,122.952}}}

 

⇒ GraphicsGrid[{{HighlightImage[i1,z],HighlightImage[i2,z]}}] 
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Fig. 4.19 Corresponding points of the two images 

We can compute the parameters of a linear geometric transformation on the 
basis of the corresponding points, the problem is overdetermined and we use the 
RANSAC regression method. 

Mathematica 
We can find the linear geometric transformation between the two images, 

⇒ →tf=FindGeometricTransform[z[[1]],z[[2]],Method "RANSAC"][[2]] 
  
  
  
  
  

⇐
0.540548 0.00736743 152.465

TransformationFunction -0.135901 0.932523 -0.20188

-0.0016377 0.000289486 1.

 

Then the second image can be transformed accordingly, see Fig. 4.20. 
⇒ {w,h}=ImageDimensions[i2]; 
⇒ →

→
i2t=ImagePerspectiveTransformation[i2,tf,DataRange Full,

PlotRange {{0,First@tf[{w,0}]},{0,h}}]  

⇐   

Fig. 4.20 The transformed second image 

Then the first and the transformed second image can be stitched, see Fig. 4.21. 
⇒ ImageCompose[i2t, {i1,1}, Round@({w,h}/2)] 

⇐   
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Fig. 4.21 The stitched images 



 

Python 
We save the coordinates of the corresponding points of the two images for Python 

⇒ Export["cuki.mtx",z[[2]]] 
⇐ cuki.mtx  
⇒ Export["caki.mtx",z[[1]]] 
⇐ caki.mtx  

Now the linear geometric transformation can be loaded from the scikit-image 
package (skimage) 

  
import math
import numpy as np
from skimage import transform as tf

 

Loading the coordinates of the corresponding points 

  
src = mmread('cuki.mtx')
dst = mmread('caki.mtx') 

Computing the parameters of the transformation and checking it, 

  
tform3=tf.ProjectiveTransform()
tform3.estimate(src, dst)  

⇐ True  
The parameters are, 

  
tform3.params  

⇐ {0.637741,0.0541895,160.326},

{-0.123859,1.08258,-8.99475},{-0.0016613,0.000519999,1.07164}}  
⇐ jj=%; 

Then the transformation matrix, 
⇒ jj//MatrixForm  

 
⇐ − − 
 − 

0.637741 0.0541895 160.326

0.123859 1.08258 8.99475

0.0016613 0.000519999 1.07164

 

The corresponding function 
⇒ tlft=LinearFractionalTransform[jj] 

  
  − −  
  

⇐
−  

0.637741 0.0541895 160.326

TransformationFunction 0.123859 1.08258 8.99475

0.0016613 0.000519999 1.07164

 

    4.2  Linear Regression Models 237



 

Now we can transform the second image, see Fig. 4.22. 
⇒ →

→
i2t=ImagePerspectiveTransformation[i2,tlft,DataRange Full,

PlotRange {{0,First@tlft[{w,0}]},{0,h}}]  

⇐   

Fig. 4.22 The transformed second image via Python 

The transformed second image will be stitched, see Fig. 4.23. 
⇒ ImageCompose[i2t, {i1,1}, Round@({w,h}/2)] 

⇐   

Fig. 4.23 The stitched images via Python 

It can be seen that the values of the transformation matrices computed by the 
two codes are different. Even after normalization of the Python result we get 
different matrix,  

⇒ %//MatrixForm  
 
 
 
 
 

⇐
0.595107 0.0505669 149.608

0.115579 1.01021 8.39344

0.00155024 0.000485237 1.

 

In this case Mathematica provides somewhat better quality, see Fig. 4.24 
⇒ {img1,img2} 
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⇐  { , } 
Fig. 4.24 The stitched images via Mathematica (left) and Python (right) 

 
 
 
 

4.3  Non-Linear Regression Models 

Basic Theory 

Let us assume that we have observations 1 2{ , , . . . , }ny y y  from a random 
variable Y which we are interested in predicting, based on the observed values 

11 21 ,1 12 22 ,2 1 2 ,{{ , , , }, { , , , },  , { , , , }}n n p p n px x x x x x x x x , from p 

independent explanatory random variables 1 2{ , , . . . , }pX X X . Our initial 
assumption is that the Xi variables are independent. Now we are looking for the 
approximation of the data points in a form: 

 =  ( ) + β  Y X   

where ℱ( ) is a nonlinear function of its argument, namely of the parameter β as 
well as X. 

However sometimes, we have nonlinearity only in the X variable, like 

 = ( ) + βY X   
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In this case the model is nonlinear, though it is a linear regression problem, 
since the model is a linear combination of nonlinear functions, it has linear 
coefficients β, which should be estimated. 

The first problem is much more difficult than the second one and many times 
leads to nonlinear global optimization task for the unknown parameters or 
coefficents. Here we discuss only two types of the models, namely polynomial 
regression and a more general one, the support vector regression, which can 
belong to the first as well as to the second category, depending on the type of 
kernels used. 

4.3.1  Polynomial Regression 

This type of regression belongs to the second category, since the function is a 
linear combination of basic functions, which are polynomials. Let us consider 
algebraic polynomials. 

Generating synthetic data set in Python, 

  

import numpy as np 
X = np.sort(5 * np.random.rand(40, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - np.random.rand(8))   

 

Saving it for Mathematica 

  np.savetxt('M:\\dX.txt',X,fmt='%.5e')    

  np.savetxt('M:\\yX.txt',y,fmt='%.5e')   

Importing the data into Mathematica, 
Xt=Import["M:\\dX.txt","Table"];⇒  
yt=Import["M:\\yX.txt","Table"];⇒  

Mathematica 
Let us visualize the data, see Fig. 4.25. 
data=Transpose[{Flatten[Xt],Flatten[yt]}];⇒  
p0=ListPlot[data,Frame True,PlotStyle Tiny,Axes None]⇒ → → →  
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⇐   
Fig. 4.25 Data points for the polynomial regression problem generated in Python 

One may fit first order model, 
fitL=Fit[data,{1,x},x]⇒  
1.3023 -0.449007 x⇐  

The second order model, 
2fitP2=Fit[data,1,x,x ,x]⇒  

20.356727 0.722628 0.235229x x⇐ + −  

While the model using third order polynomials, 
2 3fitP3=Fit[data,1,x,x ,x ,x]⇒  

2 30.617649 2.83055 1.29828 0.144008x x x− + − +⇐  

Figure 4.26 shows the different polynomials fitted to the data set and the 
second order model seems to be the best (see red line) one. 
Show[{p0,Plot[fitP3,{x,0,40},PlotStyle {Thin,Red}],

Plot[fitP2,{x,0,40},PlotStyle {Thin,Black}],

Plot[fitL,{x,0,40},PlotStyle {Thin,Green}]}]//Quiet

⇒ →
→

→  
 

⇐   
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Fig. 4.26 The fitted polynomials, linear model (green), second order model (black), third order 
model (red) 



 

Clearly the best fitting is provided by the third order model. 

Python 
Now we can use linear regression with Polynomial Features model, 

  
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression    

Preparing second order regression, 

  
regr = LinearRegression()
quadratic = PolynomialFeatures(degree=2)
X_quadratic = quadratic.fit_transform(X)

 

The estimation of the model parameters 

  clf=LinearRegression().fit(X_quadratic,y) 

Then the interception, the value of the zero order term is, 

  clf.intercept_  
0.356727⇐  

The coefficients of the higher order terms are, 

  clf.coef_  
{0.,0.722627,-0.235229}⇐  

We have the same model as given by Mathematica, 

fitP2⇒  
20.356727 0.722628 0.235229x x⇐ + −  

Let us predict the function value at x = 20 

  clf.predict(quadratic.fit_transform(20)) 
{-79.2822}⇐  

Using Mathematica, 

fitP2/.x 20⇒ →  
79.2823⇐ −  

The estimation of third order model is similar 
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regr = LinearRegression()
cubic = PolynomialFeatures(degree=3)
X_cubic = cubic.fit_transform(X)

 

  clf=LinearRegression().fit(X_cubic,y) 

  clf.intercept_  
-0.617648⇐  

  clf.coef_  
{0.,2.83055,-1.29828,0.144008}⇐  

  clf.predict(cubic.fit_transform(20)) 

{688.745}⇐  

Using Mathematica, 

fitP3/.x 20⇒ →  
688.746⇐  

4.3.2  Support Vector Regression (SVR) 

The problem of regression is that of finding a function which approximates 
mapping from an input domain to the real numbers based on a training sample. 
We refer to the difference between the hypothesis output and its training value as 
the residual of the output, as an indication of the accuracy of the fitting at this 
point. We must decide how to measure the importance of this accuracy, as small 
residuals may be inevitable while we wish to avoid large ones. The loss function 
determines this measure. Each choice of loss function will result in a different 
overall strategy for performing regression. For example, least square regression 
uses the sum of the squares of the residuals (Christianini and Shawe-Taylor 2000). 

Although several different approaches are possible, we will provide an 
analysis for generalization of regression by introducing a threshold test accuracy 
ε, beyond which we consider a mistake to have been made. We therefore aim to 
provide a bound on the probability that a randomly drawn test point will have 
accuracy less than ε. 

The linear ε-insensitive loss function ( ,  ,  )L x y f  is defined by 

( ) ( )( ) ( )( ), , max 0,L x y f y f x y f xε

ε
ε= − = − −  

where  f is a real-valued function on a domain ,  ∈X x X  and ∈y  . Similarly 
the quadratic ε-insensitive loss is given by 
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( ) ( )( ) 2

2 , ,L x y f y f xε

ε
= −  

This loss function determines how much a deviation from the true f(x) is 
penalized; for deviations less than ε, no penalty is considered. Here is how the 
loss function looks like, see Fig. 4.27. The representation of the linear ε-
insensitivity loss function in different coordinate systems. The zero error range in 
(x, y) system (left), the error variation in (y, Lε) system (right). This latest figure 
represents the linear variation of the error outer the zero error range. 

⇐   

Fig. 4.27 ε-insensitivity loss function 

For example, Fig. 4.28 shows the loss function in case ε =1, 
ε⇒ = 1;  

⇒ Abs[x]<ε,0,Abs[x]-Plot[If[ ],{x,-ε] 3,3}] 

⇐   
Fig. 4.28 ε-insensitivity loss function 

Here, similarly to Support Vector Classifier (SVC), we also can employ 
different types of kernels, like polynomial kernel, 

( )( , ) = ,+ 〈 〉
dK u v a u v  

where d > 0,  is the order of the kernel. 
Gaussian kernel belonging to the Radial Bases Function (RBF) family is also 

a frequently used kernel type, 

( , ) = Exp ( )β− −K u v u v  
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Let us employ Python to approximate our data set using polynomial as well as 
RBF kernel. 

Python 
Loading the SVR procedures and parameterizes them (Kak 2018), 

  from sklearn.svm import SVRimport numpy as np  

  svr_poly = SVR(kernel='poly', C=1e2, degree=3)svr_rbf = SVR(kernel='rbf', C=1e3, gamma=0.3)  

Estimation of the coefficients of the models, and define them as predicting 
functions, then applying them to the input of the data set, we get 

  y_poly =  svr_poly.fit(X, y).predict(X) 

  y_rbf= svr_rbf.fit(X, y).predict(X) 

Provide the results for Mathematica 

  y_poly  
{0.833111,0.832611,0.831791,0.828543,0.826287,0.824534,0.824498,

0.823624,0.818742,0.81791,0.817593,0.815605,0.815078,0.809572,

0.789117,0.787873,0.787766,0.776232,0.733654,0.717255,0.705538,

0.634705,0

⇐

.576441,0.572947,0.554049,0.546224,0.516203,0.313593,

0.230771,-0.0328292,-0.10323,-0.313898,-0.560151,-0.589567,

-0.606949,-1.07855,-1.10354,-1.2002,-1.26313,-1.72156}

 

ypoly=%;⇒  
Let us visualize the result provided by SVR in case of third order polynomial 

kernel, see Fig. 4.29. 
Show[{p0,ListPlot[Transpose[{Flatten[Xt],ypoly}],

Joined True,PlotStyle {Thin,Red}]}]

⇒
→ →  

⇐   
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Fig. 4.29 SVR approximation in case of polynomial kernel 



 

Similarly 

  y_rbf  
{-0.467642,0.117965,0.332581,0.632064,0.723807,0.772499,0.773344,

0.792888,0.868541,0.877645,0.880909,0.89914,0.903411,0.937855,

0.99157,0.993151,0.993282,1.00383,1.01165,1.00725,1.00208,

0.937755,0.848

⇐

987,0.84285,0.808327,0.793426,0.733453,0.280319,

0.10125,-0.364257,-0.460335,-0.688867,-0.871518,-0.888746,

-0.898533,-1.07061,-1.07526,-1.08928,-1.09505,-1.05904}

 

yrbf=%;⇒  
Figure 4.30 shows the approximation in case of RBF kernel. 
Show[{p0,ListPlot[Transpose[{Flatten[Xt],yrbf}],

Joined True,PlotStyle {Thin,Red}]}]

⇒
→ →  

⇐   
Fig. 4.30 SVR approximation with RBF kernel 

It can be seen that RBF kernel provides a better approximation than the 
polynomial kernel, which is true in general. 

Mathematica 
Mathematica also is able to employ SVR, with an additional advantage. Namely 
the result, the approximation function itself can be defined in symbolical way, in 
analytical form. Consequently it can be integrated in any other high level 
compiled code. 

However Mathematica has not built in function for SVR, there are more third 
party codes. Here we employ the procedures developed by Heikki Ruskeepää 
(2017). 

The first module carries out SVR with any user defined kernel, but with 
polynomial or Gaussian as basic ones. This module provides the analytical form 
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of the approximation function, as well as the numbering of the support vector 
points. 
supportVectorRegression[data_,kernel_,{param_,c_, _},

scaling_:False]:=Module[{m=Length[data],xx=N[Most/@data],

yy=N[Last/@data], , , , ,zz,k,obj,val,sol,pos ,pos ],sv,b,f},

=Array[ ,m];

=Array[ ,m

ε

αα α ββ β α β
αα α
ββ β

⇒

];

zz=Table[ToExpression["x"<>ToString[i]],{i,Length[xx[[1]]]}];

 

^

^ ^ 2]];

Switch[kernel,"polynomial",k[x_,z_]:=(1+x.z) param,

"Gaussian",k[x_,z_]:=Exp[-Total[(x-z) 2]/(2param

obj=-Total[( - ) yy]-  Total[ + ]-

1/(2c)Total[ 0.5Sum[( [i]- [i])( [j]-

[j])k[xx

^ 2 ^ 2]

[[

αα ββ ε αα ββ
αα α β α

β
ββ+ −

i]],xx[[j]]],{i,m},{j,m}];

 

{val,sol}=FindMaximum[{obj,Total[ - ]==0,Thread[ >=0],

Thread[ >=0]},Join[ , ],Method {"InteriorPoint","

Scaling" scaling},AccuracyGoal 8];

pos =Flatten@Position[ /.sol,z_/;z>10^-6];

pos =Flatten@P

αα ββ αα
ββ αα ββ

α αα
β

→
→ →

osition[ /.sol,z_/;z>10^-6];

sv=Sort@Join[pos ,pos ;

ββ
α β

 

b=Mean@Table[yy[[i]]+ + [i]/c-Sum[( [j]- [j])k[xx[[i]],xx[[j]]],

{j,m}],{i,pos }];

f=Chop[(Sum[( [i]- [i])k[xx[[i]],zz],{i,m}]+b)/.sol,10^-6];

{f,sv}]

ε α β α
α

β α  

The second module provides visualization of the approximation curve with 
the ε-insensitivity region and with the support vector points. 

T

supportVectorRegressionPlot[fit_,data_,sv_, _,opts___]:=

Module[{xdata,ydata},{xdata,ydata}=N[data];

Show[ListPlot[data,PlotRange All,

PlotStyle {Black,PointSize[Medium]}],

Graphics[Circle[#,Offset[4]]&

ε⇒

→
→

/@(data[[sv]])],

Plot[fit,{x1,Min@xdata,Max@xdata},PlotStyle Magenta],

Plot[{fit+ ,fit- },{x1,Min@xdata,Max@xdata},

PlotStyle {{Darker[Green],Dashing[Small]}}],opts]]

ε ε
→

→

 

Let us employ polynomial kernel, third order model 
{fit,sv}=supportVectorRegression[data,"polynomial",

{3,100,0.3}]//Quiet

⇒
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− − + − + −

+ − + −

+ + + −

⇐

+ + +

3 3

3 3

3 3

3 3

0.570647 2.49887(1 0.683345 1) 5.51006 (1 0.73845 1)

6.67777(1 0.762618 1) 10.9886(1 0.875769 1)

11.4699(1 0.892358 1) 69.1679(1 0.898521 1)

1.11172(1 4.56326 1) 0.350979(1 4.60986 1

{5,7

)

,

{

,

x x

x x

x x

x x

8,9,10,11,12,13,14,15,16,17,18,19,

20,21,26,31,33,34,35,37,38,39}}

 

Figure 4.31 shows the approximation function, 
Show[{p0,supportVectorRegressionPlot[fit,data,sv,0.3],p0}]⇒  

⇐   
Fig. 4.31 Approximation with third order polynomial kernel 

The data points, which are inside the insensitivity region do not influence the 
residual, the loss function value. 

Now, let us employ the Gaussian kernel, 
{fit,sv}=

supportVectorRegression[data,"Gaussian",{2,1000,0.3}]//Quiet

⇒
 

( ) ( )

( ) ( ) ( )

( ) ( )

2 2

2 2 2

2 2

1 1
0.0554427 1 0.683345 1

8 8

1 1 1
0.73845 1 0.762618 1 0.875769 1

8 8 8

1 1 1
0.892358 1 0.898521 1 0.935335

8 8 8

{ 1.2209 66.4909 e 9.6771 e

36.3709 e 47.0074 e 88.4341 e

93.3876 e 712.9156 e 104.9449 e

x x

x x x

x x x

− − − −

− − − − − −

− − − − − −

− − − −

− − −

+ −

⇐

( )

( ) ( ) ( )

2

2 2 2

1

1 1 1
4.02302 1 4.05113 1 4.06756 1

8 8 8

{1,5,7,8,9,10,11,1

35.1427 e 34.6850 e 34.

2,13,14,15,16,17,

18

2

,19,20,21,26,31,32,33,34,3

259 e ,

5}}

x x x− − − − − −

−

+ +

 

Figure 4.32 shows the result, 
Show[{p0,supportVectorRegressionPlot[fit,data,sv,0.3],p0}]⇒  
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⇐   
Fig. 4.32 Approximation of SVR in case of Gaussian kernel 

Mathematica provides nearly the same approximation for the two different 
kernels, while the Python code can approximate the data set properly in case of 
Gaussian kernel (Liu et al. 2018). 

4.3.3  Boundary of the Saturn Ring 

This example illustrate, that sometimes it is possible to avoid regression and we 
can use interpolation as a special case of regression. This can be done by 
eliminating "wrong" data, so called outliers. Let us consider a spacecraft view, 
from Cassini in 2016, showing Saturn' s northern hemisphere. Image via 
NASA/JPL − Caltech/Space Science Institute (Fig. 4.33). 

img=⇒ ; 

Fig. 4.33 Saturn’s northern hemisphere. 
Image via NASA/JPL − Caltech/Space Science Institute 

Employing this image we would like to guess the outer boundary of the rings 
via fitting a curve on it. In order to get some points of the boundary first we 
remove the background of the image, see Fig. 4.34. 
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img1=RemoveBackground[img]⇒  

⇐   
Fig. 4.34 The image without background 

Then we are looking for some key points of this image, see Fig. 4.35. 
corners=ImageCorners[img1,MaxFeatures 40];⇒ →  
hu=HighlightImage[img1,corners]⇒  

⇐   
Fig. 4.35 The image with key points 

In order to select points on the perimeter, we compute the convex hull of the 
points, 
Needs["ComputationalGeometry`"]⇒  

The built-in function will provide the numbering of the corner points 

convexhull=ConvexHull[corners]⇒  
{34,27,7,20,19,11,15,32,40,37,9,13,23,18,35}⇐  

The coordinates of these points are 
pp=Map[corners[[#]]&,convexhull]⇒  
{{746.5,271.5},{738.5,284.5},{708.5,317.5},{625.5,367.5},

{511.5,403.5},{232.5,403.5},{130.5,368.5},{44.5,214.5},

{60.5,188.5},{88.5,158.5},{224.5,88.5},{618.5,87.5},

{676.5,113.5},{691.5,122.5},{742.5,

⇐

170.5}}

 

So we selected the perimetrical points, see Fig. 4.36. 
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hu=HighlightImage[img1,pp]⇒  

⇐   
Fig. 4.36 The perimetrical points 

Let us fit an ellipse to the perimetrical points. The general form of an ellipse, 
2 2Ax + B x y+Cy + D x+ E y+ F = 0  

Remark 
In case of noisy data one should consider a constrain, 

2 0B  4AC <−  

Employing Mathematica, 

⇒ 2 2lin= 1 , 1, 2,2 1 2, 2# # # # # # &@@@pp; 
⇒ lm=LinearModelFit[lin,{1,a,b,c,d},{a,b,c,d}] 
⇐ FittedModel[-71352.4-0.246181a+214.937b+507.896c-0.0396957d] 
⇒ lm["ParameterTable"] 
⇐  

 Estimate Standard Error t-Statistic P-Value 
1 -71352.4 99.228 -719.076 6.65759×10-25 
a -0.246181 0.000555238 -443.379 8.38011×10-23 
b 214.937 0.460803 466.439 5.04728×10-23 
c 507.896 0.39964 1270.88 2.2389×10-27 
d -0.0396957 0.000394002 -100.75 2.27349×10-16 

⇒ pa=lm["BestFitParameters"]; 
⇒ w[x_,y_]:=pa.{1,x^2,x,y,2xy}-y^2;  
⇒

→ →
cc=ContourPlot[w[x,y]==0,{x,0,800},{y,0,500},

ContourStyle {Thick,Red},Epilog Point[points]];
 

The model equation 
⇒ TraditionalForm[-w[x,y]==0] 
⇒ 2 20.246181x +0.0793913xy-214.937x+y -507.896y+71352.4==0  
⇒ Show[{img1,cc}] 
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The result can be seen in Fig. 4.37. 

⇐   
Fig. 4.37 The estimated border line of the Rings of Saturn 

Alternatively instead of fitting an ellipse to these points we demonstrate a 
more general technique to estimate the other points of the perimeter as an 
alternative solution can be the parametric regression, or in our case interpolation. 
We are looking for the functions 

( )x x t=  

( )y y t=  

where (x(t), y(t)) are the coordinates of a point of the perimeter. We shall employ 
the length of the linear lines connecting the neighboring points of the convex hull, 
see Fig. 4.38. 
HighlightImage[img1,PlanarGraphPlot[corners,convexhull]]⇒  

⇐   
Fig. 4.38 The perimetrical points 

Let us compute this parameter values belonging to the different points. 
Closing the hull, 
data=Join[pp,{First[pp]}];⇒  

Then the parameter values are 
n=Length[data];⇒  
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t={0}; 

Do[t=AppendTo[t,Last[t]+Norm[data[[i+1]]-data[[i]]]],{i,1,n-1}]

⇒
 

Assigning these parameter to the xi and yi coordinates, we get the lists of (xi, ti) 
and (yi, ti), 
dataxt=MapThread[{#1,#2[[1]]}&,{t,data}];⇒  
datayt=MapThread[{#1,#2[[2]]}&,{t,data}];⇒  

Now we employ interpolation instead of regression for x(t) and y(t) 
xatInt=Interpolation[dataxt,InterpolationOrder 3];⇒ →  
yatInt=Interpolation[datayt,InterpolationOrder 2];⇒ →  

Then we can use parametric plot to visualize the outer border line, see Fig. 4.39. 
par=ParametricPlot[{xatInt[u],yatInt[u]},{u,0,Max[t]},

PlotStyle {Thick,Red}];

⇒
→  

Show[{hu,par}]⇒  

⇐   
Fig. 4.39 The estimated border line of the Rings of Saturn 

Interpolation does not require assumption of ellipsis. 

4.4  Robust Regression Models 

Basic Theory 

Robust fitting means an estimation technique which is able to estimate accurate 
model parameters not only despite small- scale noise in the data set but 
occasionally large scale measurement errors (outliers). Outlier’s definition is not 
easy. Perhaps considering the problem from the practical point of the view, we 
can say that data points, whose appearance in the data set causes dramatically 
change in the result of the parameter estimation can be labeled as outliers. 

Basically there are two different methods to handle outliers: 

     4.4  Robust Regression Models 253



 

a) weighting out outliers, 
b) discarding outliers. 

Weighting outliers means that we do not kick out certain data points labeled 
as outlier but during the parameter estimation process we take them with a low 
weight into consideration in the objective function. Such a technique is the Local 
Regression method. 

The other technique will try to identify data points, which make "trouble" 
during the parameter estimation process. Trouble means that their existence in the 
data set change the result of the parameter estimation considerably. One of the 
representatives of this technique is the RANdom SAmple Consensus (RANSAC) 
method. 

Both these techniques eliminate outliers in a way. However there are softer 
methods used in case of presence of outliers, too. 

The simplest method of estimating parameters in a regression model that are 
less sensitive to outliers than the least squares estimates, is to use least absolute 
deviations. Even then, gross errors (outliers) can still have a considerable impact 
on the model, motivating research into even more robust approaches. 

In 1973, Huber introduced ML-estimation for regression (Huber 1973). The 
ML stands for "maximum likelihood type". The method is robust to outliers in the 
response variable. This can be considered as a generalization of ordinary least 
square method, since it can be applied for any error distribution. The error 
distribution can be estimated by the Expectation Maximization method (Awange 
et al. 2018). 

4.4.1  Local Regression (loess) 

Let us employ the environmental data set providing relation between ozone 
concentration, solar radiation, temperature and the strength of wind. 
env=Rest[Import["M:\\environmental.txt","Table"]];⇒  
{no,ozone,radiation,temperature,wind}=env//Transpose;⇒  

Here we consider the relation between ozone concentration and strength of 
wind, see Fig. 4.40. 
data=Transpose[{wind,ozone}];⇒  
pdata=ListPlot[data,AspectRatio 1,PlotRange All,

AxesOrigin {0,0},PlotStyle PointSize[0.02],

Frame True, FrameLabel {"wind","ozone concentration"}]

⇒ → →
→ →

→ →
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⇐   
Fig. 4.40 Relation between ozone concentration and the strength of wind 

Mathematica 
We approach the data locally via a p order polynomial curve. The normalized [-
1, 1] data values will be weighted, see Fig. 4.41 below, 
Plot[T[u],{u,-1,1},Frame True,⇒ →  
FrameLabel {"Normalized data value","Local weight"}]⇒ →  

⇐   
Fig. 4.41 Local weight values around the data point in the relative location of (0,0) 

The Mathematica function carrying out local first or second order regression is, 

T

localRegress[data_,localpols_, _, _]:=

Module[{xx,ff,a,b,n,x,q,xwei,y},{xx,ff}=data ;a=Min[xx];

b=Max[xx];n=Length[xx];x=Range[a,b,(b-a)/(localpols-1)];

q=Floor[  n];xwei={#,Table[ww[i,#,xx,q],{i,n}]}&/

α λ

α

⇒

@x;

Interpolation[{#[[1]],Normal[LinearModelFit[data,y^Range[0, ],

y,Weights #[[2]]+10^-15]]/.y #[[1]]}&/@xwei]]

λ
→ →

 

where the input parameters are:  
data − (x, y) data pairs 
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localpols − the number of the applied local points in the interval 
α − smoothing parameter, α ≤ 1 A small value leads to 

less     smoothing whereas close to 1 results in a strong smoothing 
λ −  the degree of the local polynomials (either 1 or 2) 

Let us employ the method with first and second order polynomial, 
{fit1,fit2}=

{localRegress[data,20,0.9,1],localRegress[data,20,0.9,2]};

⇒
 

Figure 4.42 shows the result 
GraphicsGrid[{Map[Show[{pdata,Plot[#[x],{x,2,21},

PlotStyle {Thin,Red}]//Quiet}]&,{fit1,fit2}]}]

⇒
→  

⇐   
Fig. 4.42 Local regression with polynomial of first and second degree 

Let us save these data for Python 
Export["M:\\wind.mtx",{wind}];⇒  
Export["M:\\ozone.mtx",{N[ozone]}];⇒  

Python 
In scikit there is not such a “built-in” function. However one can use the loess.py 
function. Let us load some necessary procedures (Mayorov 2018), 

  

import numpy as np
import pandas as pd
import scipy
import matplotlib.pyplot as plt
import seaborn as sns

 

The definition of the function is 
import numpy as np                                            
import pandas as pd
import scipy  
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def loc_eval(x, b):
    """
    Evaluate `x` using locally-weighted regression parameters.
    Degree of polynomial used in loess is inferred from b. `x`
    is assumed to be a scalar.
    """

 

    loc_est = 0                                              
    for i in enumerate(b): loc_est+=i[1]*(x**i[0])
    return(loc_est)  

    def loess(xvals, yvals, alpha, poly_degree=1):
    """
    Perform locally-weighted regression on xvals & yvals.
    Variables used inside `loess` function:
        n     => number of data points in xvals

 

        m     => nbr of LOESS evaluation points
        q     => number of data points used for each
                 locally-weighted regression
        v     => x-value locations for evaluating LOESS
        locsDF=> contains local regression details for each
                 location v

 

        evalDF=> contains actual LOESS output for each v
        X     => n-by-(poly_degree+1) design matrix
        W     => n-by-n diagonal weight matrix for each
                 local regression
        y     => yvals

 

        b     => local regression coefficient estimates.
                 b = `(X^T*W*X)^T*W*y`. Note that `@`
                 replaces `np.dot` in recent numpy versions.
        local_est => response for local regression
    """

 

    # Sort dataset by xvals.
    all_data = sorted(zip(xvals, yvals), key=lambda x: x[0])
    xvals, yvals = zip(*all_data)

 

    locsDF = pd.DataFrame(
                columns=[
                  'loc','x','weights','v','y','raw_dists',
                      'scale_factor','scaled_dists'
                  ])

 

    evalDF = pd.DataFrame(
                columns=[
                  'loc','est','b','v','g'
                  ])

 

  n = len(xvals)
    m = n + 1
    q = int(np.floor(n * alpha) if alpha <= 1.0 else n)
    avg_interval = ((max(xvals)-min(xvals))/len(xvals))
    v_lb = max(0,min(xvals)-(.5*avg_interval))
    v_ub = (max(xvals)+(.5*avg_interval))
    v = enumerate(np.linspace(start=v_lb, stop=v_ub,

 num=m), start=1)
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    for i in v:
        iterpos = i[0]
        iterval = i[1]
        # Determine q-nearest xvals to iterval.
        iterdists = sorted([(j, np.abs(j-iterval)) \
               for j in xvals], key=lambda x: x[1])

 

        _, raw_dists = zip(*iterdists)
        # Scale local observations by qth-nearest raw_dist.
        scale_fact = raw_dists[q-1]
        scaled_dists = [(j[0],(j[1]/scale_fact))

 for j in iterdists]
        weights = [(j[0],((1-np.abs(j[1]**3))**3 \
             if j[1]<=1 else 0)) for j in scaled_dists]

 

        # Remove xvals from each tuple:
        _, weights      = zip(*sorted(weights,     

key=lambda x: x[0]))
        _, raw_dists    = zip(*sorted(iterdists,   

key=lambda x: x[0]))
        _, scaled_dists = zip(*sorted(scaled_dists,

key=lambda x: x[0]))

 

        iterDF1 = pd.DataFrame({
                    'loc'         :iterpos,
                    'x'           :xvals,
                    'v'           :iterval,
                    'weights'     :weights,

 

                    'y'           :yvals,
                    'raw_dists'   :raw_dists,
                    'scale_fact'  :scale_fact,
                    'scaled_dists':scaled_dists
                    })

 

        locsDF    = pd.concat([locsDF, iterDF1])
        W         = np.diag(weights)
        y         = yvals
        b         = np.linalg.inv(X.T @ W @ X) @ (X.T @ W @ y)
        local_est = loc_eval(iterval, b)
        iterDF2   = pd.DataFrame({

 

                       'loc':[iterpos],
                       'b'  :[b],
                       'v'  :[iterval],
                       'g'  :[local_est]
                       })

 

       evalDF = pd.concat([evalDF, iterDF2])

    # Reset indicies for returned DataFrames.
    locsDF.reset_index(inplace=True)
    locsDF.drop('index', axis=1, inplace=True)
    locsDF['est'] = 0; evalDF['est'] = 0
    locsDF = locsDF[['loc','est','v','x','y','raw_dists',
                     'scale_fact','scaled_dists','weights']]
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    # Reset index for evalDF.
    evalDF.reset_index(inplace=True)
    evalDF.drop('index', axis=1, inplace=True)
    evalDF = evalDF[['loc','est', 'v', 'b', 'g']]

    return(locsDF, evalDF)

 

Importing data files 

  import numpy as np  

  from numpy import array, matrix  

  from scipy.io import mmread, mmwrite  

  xv=mmread('M:\\wind.mtx') 

  xvals=xv[0] 

  yv=mmread('M:\\ozone.mtx') 

  yvals=yv[0] 

Using linear local regression 

  regsDF, evalDF = loess(xvals, yvals, alpha=.9, poly_degree=1) 

The predicted "wind" values 

  l_x=evalDF['v'].valuesl_x  

{2.21712,2.38438,2.55164,2.71889,2.88615,3.05341,3.22067,3.38793,

3.55519,3.72245,3.88971,4.05697,4.22423,4.39149,4.55875,4.726,

4.89326,5.06052,5.22778,5.39504,5.5623,5.72956,5.89682,6.06408,

18.274,1

⇐

8.4413,18.6085,18.7758,18.943,19.1103,19.2776,19.4448,

19.6121,19.7793,19.9466,20.1138,20.2811,20.4484,20.6156,20.7829}

 

u=%;⇒  
The predicted "ozone" values 

  l_y=evalDF['g'].valuesl_y  
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



 

{117.46,115.406,113.357,111.315,109.279,107.251,105.23,103.219,

101.217,99.2251,97.2435,95.2725,93.3119,91.3615,89.4207,87.489,

85.566,83.6514,81.7446,79.8453,77.953,76.0674,74.1876,72.3127,

17.8324,17

⇐

.6265,17.4198,17.2126,17.0051,16.7974,16.5898,16.3824,

16.1755,15.9692,15.7637,15.5592,15.3557,15.1536,14.9531,14.7544}

 

v=%;⇒  
Let us visualize the result in Mathematica, see Fig. 4.43. 
p1=ListPlot[Transpose[{u,v}],

PlotStyle {Thin,Red},Joined True];

⇒
→ →  

Show[{pdata,p1}]⇒  

⇐   
Fig. 4.43 Local regression with local polynomial of first degree 

We can do the same with a polynomial of second degree 

  regsDF, evalDF = loess(xvals, yvals, alpha=.9, poly_degree=2) 

  l_x=evalDF['v'].valuesl_x  

{2.21712,2.38438,2.55164,2.71889,2.88615,3.05341,3.22067,3.38793,

3.55519,3.72245,3.88971,4.05697,4.22423,4.39149,4.55875,4.726,

4.89326,5.06052,5.22778,5.39504,5.5623,5.72956,5.89682,6.06408,

18.274,1

⇐

8.4413,18.6085,18.7758,18.943,19.1103,19.2776,19.4448,

19.6121,19.7793,19.9466,20.1138,20.2811,20.4484,20.6156,20.7829}

 

u=%;⇒  

  l_y=evalDF['g'].valuesl_y  
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





 

{35.951,132.584,129.252,125.958,122.703,119.488,116.315,113.187,

110.105,107.071,104.085,101.148,98.2602,95.4215,92.6315,89.8898,

87.1962,84.5504,81.952,79.4004,76.8951,74.4355,72.0205,69.6488

19.3864,

⇐

M
19.41,19.4416,19.4814,19.5295,19.586,19.6512,19.7252,

19.8083,19.9007,20.0026,20.1143,20.2362,20.3688,20.5126,20.6683

 

v=%;⇒  
p1=ListPlot[Transpose[{u,v}],

PlotStyle {Thin,Red},Joined True];

⇒
→ →  

The result can be seen in Fig. 4.44. 
Show[{pdata,p1}]⇒  

⇐   
Fig. 4.44 Local regression with second order local polynomial is more sensitive for points 

of the less dense data region 

4.4.2  Expectation Maximization 

This technique is basically a soft biclustering method, which can be employed for 
outlier elimination. 

Let us consider the following synthetic data set, see Fig. 4.45. 

( )7/9data=Map[ , 10 +

RandomReal[-2.6,1.9]/.x ,Range[0.2,30,0

#

#& .1]];

x

→

⇒
 

dataAlt=Map[If[RandomInteger[{0,1}]==1&&#[[2]]>10.5,

{#[[1]],1.5 #[[2]]},#]&,data];

⇒
 

pL=ListPlot[dataAlt,AxesLabel {"x","y"},PlotRange All,

PlotStyle PointSize[0.012],AspectRatio 1,Frame True]

⇒ → →
→ → →  
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⇐   
Fig. 4.45 Synthetic data set with outliers 

As first approach let us employ ordinary least square method (OLS), 

ye=Fit[dataAlt,{1,x, },x]x⇒  
1.37543 +1.33926 +0.177643 xx⇐  

The error of the approximation 
=Map[#[[2]]-ye/.x #[[1]]&,dataAlt];⇒ ∈ →  

Let us save the generated synthetic data for Python, 
m=Partition[ ,1];(*data for Python*)⇒ ∈  

The error distribution is not a Gaussian distribution (Fig. 4.46). 
pH=Histogram[ ,Automatic,"PDF"]⇒ ∈  

⇐   
Fig. 4.46 Histogram of the errors of the OLS method 

The second peak indicates outliers. We assume that we have the mixture of two 
Gaussian distributions. One of the errors of the inliers and one of the outliers 
data. Then the Expectation Maximization algorithm will identify the elements of 
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the two different distributions. The result will be a membership function of 
values in [0, 1]. 

Expectation Maximization (EM) Algorithm 

Let us consider a two-component Gaussian mixture represented by the mixture 
model in the following form, 

( ) ( ) ( )12 1 1 1 2 2 2, , , ,η µ σ η µ σ= + NN x N x x  

where 

( )

( )2

22e, , , 1, 2
2

µ

σ

µ σ
πσ

−
−

= =

i

i

x

i i
i

N x i  

and ηi’s are the membership weights constrained by 

1 2+ = 1η η  

If we would know the membership of all xi elements then we could compute 
the parameters (µ, σ) of the two distributions, for example µ1 

1
1

1μ
n

= ∑
1

,1

n

i
i

x  

and σ1 

( )2
1 1

1

1 )σ μ
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= −∑
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n
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i

x  

  
Fig. 4.47 Assuming the membership of the elements, the parameters of the distributions can be 

estimated 

In this case we know that the yellow elements belong to the first and the blue 
elements belong to the second distribution, see Fig. 4.47. 

Now let us assume that we know the parameters and should like to guess the 
value of the membership function, which means the probability of the xi elements 
belongings to the distributions. 
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Fig. 4.48 Employing the parameters of the distribution of the probability of the membership of 
the xi elements can be estimated 



 

How likely does a white element belong to the yellow and to the blue 
distribution? (see Fig. 4.48). 

The probability that xi belongs to the first distribution is (Bayesian statistics) 

( )( )
( )( ) ( )( )

( )( ) ( )( ) ( )( ) ( )( )

1 1

1 1 1 1

1 1 1 1 2 2 2 2
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where xi is the observable event and N(μ1,σ1) is the hypothesis. In addition 

( )( )
( )2

1
2
1

-
-

2

1 1
1

e, =
2

x μ

σ

iP x N μ σ
πσ

 

The probability that xi belongs to the second distribution is, 

( )( ) ( )( )2 2 1 1, 1 ,i iP N x P N xµ σ µ σ= −  

So we have a chicken and egg problem. Consequently we can carry out a re-
estimation of the parameters, for example, 

( )( )
( )( )

1 1
1

1 1

,
=

,
i ii

ii

x P N μ σ x
μ

P N μ σ x
∑
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and 

( ) ( )( )
( )( )

2
1 1 12

1
1 1

- ,
=

,
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x μ P N μ σ x
σ

P N μ σ x
ι

∑
∑

 

To evaluate the algorithm we start to guess the parameter values 1 1( , )µ σ  and 

2 2( , )µ σ . The progress of the algorithm can be seen in Fig. 4.49. 
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Fig. 4.49 Progress of the EM algorithm. 

Figure adopted from https://www.youtube.com/watch?v=REypj2sy_5U 

Mathematica 
This algorithm is implemented in Mathematica see, Fox et al. (2013) as a 
Mathematica Demonstration project. The code has been modified and applied 
here.  In the next section we illustrate how this function works. 
ExpectationMaximization[samples_,niter_,init_]:=

Module[{sim,data,updates},

sim=samples;

problists[ _,y_]:=Block[{probs,totalprobs},

probs=Table[ [[3,i]]*Map[PDF[Apply[NormalDistribution,

[[i]]],#]&,y],{

θ
θ

θ

⇒

i,2}];

totalprobs=Total[probs];

Map[#/totalprobs&,probs]];

pi[j_,p_]:=Mean[p[[j]]];

 

emu[sim_,j_,p_]:=Total[sim*p[[j]]]/Total[p[[j]]];

emstd[sim_,j_,u_List,p_]:=Total[(sim-u[[j]])^2*p[[j]]] /

Total[p[[j]]];

em[params_,sim_]:=Module[{theprobs,mus,vars,probs},

theprobs=problists[params,sim];

mus=Map[emu[sim,#,theprobs]&,{1,2}];
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vars=Map[emstd[sim,#,params[[1;;2,1]],theprobs]&,{1,2}];

probs=Map[pi[#,theprobs]&,{1,2}];data=theprobs;

Append[Transpose[{mus,vars^.5}],probs]];

updates=NestList[em[#,sim]&,init,niter];

{data,updates}]

 

First we should compute the parameters of the two Gaussian via EM 
algorithm. Considering the histogram of the model errors, we guess parameters of 
the two Gaussian are 
{Δ,param}=ExpectationMaximization[ ,100,

{{6.5,1.6},{-0.5,1.25},{0.5,0.5}}];

⇒ ∈
 

The result of the parameter values 
{{ 1, 1},{ 2, 2},{ 1, 2}}=Last[param]µ σ µ σ η η⇒  
{{5.42244,0.918888},{-0.697125,1.67744},{0.113917,0.886083}}⇐  

These can be displayed in a table form, see Table 4.2. The first column contains 
the values of the membership function or mixing parameters, 
Grid[{{Panel[TableForm[param[[-1,1;;2]],

TableHeadings {param[[-1,3]],{" "," "}}]]}}]µ σ
⇒

→  

Table 4.2 Parameters of the Gaussian mixture after the first iteration 

 µ σ 
0.113917 5.42244 0.918888 
0.886083 −0.697125 1.67744 

 
Figure 4.50 shows the density functions of the two clusters. 
p3=Plot[{param[[-1,3,1]]*PDF[Apply[NormalDistribution,

param[[-1,1]]],x],param[[-1,3,2]]*PDF[Apply[NormalDistribution,

param[[-1,2]]],x]},{x,-4.5,8.2},PlotStyle {{Red},{Blue}},

PerformanceGoal "Speed",P

⇒

→
→ lotRange All];→

 

Show[{pdata,p1}]⇒  

⇐   
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Fig. 4.50 The Probability Density Function (PDF) of the two components and the normalized 
histogram of the data. The red curve represents the outliers 



 

Now, we separate the mixture of the data samples into two clusters: cluster of 
outliers and cluster of inliers. Membership values of the clusters are in the output 
Δi,  i = 1, 2. 

In order to get Boolean (crisp) clustering, let us round the membership values. 

S1=Round[Δ[[1]]];S2=Round[Δ[[2]]];⇒  
Then the elements in the first cluster are 
XYZOut=Map[dataAlt[[#]]&,Position[S1,1]//Flatten];⇒  

The number of the elements 
Length[XYZOut]⇒  
35⇐  

Similarly, the elements in the second clusters 
XYZIn=Map[dataAlt[[#]]&,Position[S2,1]//Flatten];⇒  

The number of elements 
Length[XYZOIn]⇒  
264⇐  

Let us visualize the two clusters, the inliers and outliers, see Fig. 4.51. 
pOut=ListPlot[XYZOut,AxesLabel {"x","y"},PlotRange All,

PlotStyle Red,AspectRatio 1];

⇒ → →
→ →  

pIn=ListPlot[XYZIn,AxesLabel {"x","y"},PlotRange All,

PlotStyle Blue,AspectRatio 1];

⇒ → →
→ →  

Show[{pIn,pOut},PlotRange All,Frame True]⇒ → →  

⇐   
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Fig. 4.51 The inliers (blue) and the outliers (red) points after the first iteration 



 

There are some points which are clustered incorrectly. Let us carry out one 
more iteration to improve the elimination of the outliers. We consider only the 
inliers and carry out a new regression, 

ye=Fit[XYZIn,{1,x, },x]x⇒  
0.542728 +2.31778 -0.0603389 xx⇐  

The errors are, 
=Map[#[[2]]-ye/.x #[[1]]&,XYZIn];⇒ ∈ →  

Figure 4.52 shows the histogram of errors, 
pH1=Histogram[ ,Automatic,"PDF"]⇒ ∈  

⇐   
Fig. 4.52 The histogram of errors after the second iteration 

Let us carry out a new Expectation Maximation step, 
{Δ,param}=ExpectationMaximization[ ,100,{{5,0.5},{0,1.25},

{0.1,0.9}}]//Quiet;

⇒ ∈
 

The result of the parameter values 
{{ 1, 1},{ 2, 2},{ 1, 2}}=Last[param]µ σ µ σ η η⇒  
{{5.41711,0.337091},{-0.0827596,1.26902},{0.0150475,0.984952}}⇐  

These can be displayed in a table form, see Table 4.3 
Grid[{{Panel[TableForm[param[[-1,1;;2]],

TableHeadings {param[[-1,3]],{" "," "}}]]}}]µ σ
⇒

→  

 
Table 4.3 Parameters of the Gaussian mixture after the second iteration 

 µ σ 
0.0150475 5.41711 0.337091 
0.984952 −0.0827596 1.26902 
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Then the elements of the two clusters can be computed. The outliers, 

S1=Round[Δ[[1]]];S2=Round[Δ[[2]]];⇒  
XYZOut1=Map[XYZIn[[#]]&,Position[S1,1]//Flatten];⇒  
Length[XYZOut]⇒  
4⇐  

The inliers 
XYZIn1=Map[XYZIn[[#]]&,Position[S2,1]//Flatten];⇒  
Length[XYZIn1]⇒  
260⇐  

Figure 4.53 shows the outliers and inliers, 
pOut=ListPlot[XYZOut1,AxesLabel {"x","y"},PlotRange All,

PlotStyle Red,AspectRatio 1];

⇒ → →
→ →  

pIn=ListPlot[XYZIn1,AxesLabel {"x","y"},PlotRange All,

PlotStyle Green,AspectRatio 1];

⇒ → →
→ →  

Show[{pIn,pOut,pIn1,pOut1},PlotRange All,Frame True]⇒ → →  

⇐   
Fig. 4.53 The histogram of inliers (green) and outliers (red) after the second iteration 

Practically we have now, no outliers. Let us carry out the least square 
estimation for the inliers, 

ye=Fit[XYZIn1,{1,x, },x]x⇒  
0.165426 +2.6727 -0.128973 xx⇐  

Fig. 4.54 shows the estimated regression line 
Show[{pIn,pOut,pIn1,pOut1,Plot[ye,{x,0,30},

PlotStyle {Red,Thin}]},PlotRange All,Frame True]

⇒
→ → →  
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⇐   
Fig. 4.54 The regression line after the elimination of outliers via  

Expectation Maximization algorithm 

Python 
In Python we may employ Gaussian Mixture method to cluster data representing 
a mixture of  normal distribution. Let us read the original synthetic data set 
Export["G:\\cuki.mtx",m];⇒  

  from numpy import array, matrixfrom scipy.io import mmread, mmwrite  

  caki=mmread('G:\cuki.mtx') 

Loading the GaussianMixture procedure, 

  import numpy as npfrom sklearn.mixture import GaussianMixture  

This method can be applied to multi component mixture, too. Let us separate the 
mixture, 

  gmm=GaussianMixture(n_components=2).fit(caki) 

Labels are the crisp membership values of the clusters. The zeros stand for the 
inliers and one stand for the outliers, 

  labels=gmm.predict(caki)
labels
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{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

1,1,1,1,0,0,1,0,1,0,1,0,0,1,0,1

⇐

,1,0,0,0,0,0,0,0,1,0,0,1,

0,0,0,0,1,0,0,0,0,1,0,0,1,0,0,1,0,0,0,1,0,1,1,0,0,0}

 

z=%;⇒  
Selecting the outlier coordinates 
outliers=Select[MapThread[#1 #2&,{dataAlt,z}],#[[1]]!=0&];⇒  

Figure 4.55 shows the result, 
Show[{pL,ListPlot[outliers,PlotStyle Red]}]⇒ →  

⇐   
Fig. 4.55 The separation of the outliers and inliers via GaussianMixture procedure 

4.4.3  Maximum Likelihood Estimation 

It is known that the least square is valid if the error distribution follows a Gaussian 
distribution with zero mean value. 

In our case the error is  

( )Δi i i iy a b x cx= − + +  

The probability density function for a single Gaussian, N(μ, σ) 

( )( )2

22e
2

µ

σ

πσ

− + + −
−

=

i i iy a b x cx

PDF  
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To find the optimal parameters we should maximize the likelihood (ML) 
function 

( )( )2

22

1 1

e
2

µ

σ

πσ

− + + −
−

= =

= =∏ ∏
 

i i iy a b x cx

i i

PDF  

or 

( ) ( )( ) ( )log , log , , log 2i i
i

x N xθ µ σ πσ
∈

= − −∑


  

where θ represents the parameters of our model, θ = (a, b, c). 
Otherwise we should minimize 

( ) ( )( )2
log ,i i i i

i

x y a b x cxθ µ
∈

= − + + −∑


 

If μ = 0, then this is the least square method. 
Let us check it in our case. The error of the i-th data point is 

( )Δi i i iy a b x cx= − + +  

We employ the synthetic data generated in the previous section. 
The errors as function of the parameters (a, b, c) to be estimated, 

[ ]# 1dL=Map[#[[2]]-(a+b +c #[[1]])&,dataAlt];  ⇒  

For example, the first one is, 

dL[[1]]⇒  
0.0732648 -a-0.447214 b-0.2 c⇐  

It goes without saying, that from a different point of view, this is an 
overdetermined linear system for the parameters. 

Mathematica 
Let us employ the maximum likelihood technique. Assuming normal distribution, 
the likelihood function to be maximized is, 
LL=LogLikelihood[NormalDistribution[0,1],dL];⇒  

Then 
NMaximize[LL,{a,b,c}]⇒  
{-1227.01,{a 1.37543,b 1.33926,c 0.177643}}⇐ → → →  

So we have got the same result as in case of the least square method, see at the 
beginning of the Sect. 4.4.2, OLS solution. 
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When the error distribution does not satisfies the condition, we may consider 
that the error distribution can be approximated by a mixture of Gaussian 
distributions, 

( ),i i i
i

D N µ σ
∈

= ∑


 

The minimal case is two components. The likelihood function for a two-
component Gaussian mixture can be written as, 

( ) ( )( ) ( )( )
1 2

1 1 2 2log , log , , log , ,i i i
i i

x N x N xθ µ σ µ σ
∈ ∈

= +∑ ∑
 

 

where the likelihood function for one of the components can be developed as it 
follows. 

Let us employ the result of the second iteration step of the EM algorithm. Then 
the error function for the inliers, 

[ ]dL1=Map[#[[2]]-(a+b c #[[1]])&,XYZIn1];# 1  + ⇒  

For example, the first element is, 

dL1[[1]]⇒  
0.0732648 -a-0.447214 b-0.2 c⇐  

The estimated parameters of the Gaussian, see Table 4.3 are. 
=-0.083; =1.269;µ σ⇒  

Then the likelihood function is 
LL1=LogLikelihood[NormalDistribution[ , ],dL1];µ σ⇒  

Similarly for the outliers, 

[ ]# 1dL2=Map[#[[2]]-(a+b +c #[[1]])&,XYZOut1];  ⇒  
5.417; 0.337;µ σ⇒ = =  

LL2=LogLikelihood[NormalDistribution[ , ],dL2];µ σ⇒  
To find the parameters, let us maximized the sum of likelihood functions, 
NMaximize[LL1+LL2,{a,b,c}]⇒  
{-431.008,{a 0.474593,b 2.47132,c -0.0922543}}⇐ → → →  

Then the approximation 

ye1=a+b +c x/.%[[2]]x⇒  
0.474593 +2.47132 -0.0922543 xx⇐  

Let us display this function with the EM solution, see Fig. 4.56. 
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Show[{pL,Plot[ye1,{x,0,30},PlotStyle {Purple,Thin}],

Plot[ye,{x,0,30},PlotStyle {Red,Thin}]},PlotRange All,

Frame True,Axes False,AspectRatio 1]

⇒ →
→ →

→ → →
 

⇐   
Fig. 4.56 The ML solution based on the EM data and the EM solution 

The ML method for mixture may be employed using inspection to get the 
mean values and the standard deviation of the error distributions without EM. 

Python 
Now let us employ ML algorithm in Python. We shall use the EM data set, 
namely, for example the first element. 

XYZIn1[[1]]⇒  
{0.2,0.0732648}⇐  

Let us save the data set for Python, 
{xx,yy}=Transpose[XYZIn1];⇒  
Export["G:\\zcuki.mtx",{xx}];⇒  
Export["G:\\ycuki.mtx",{yy}];⇒  

Preparation for reading data 

  from numpy import array, matrixfrom scipy.io import mmread, mmwrite  

Loading the data set 

  xcaki=mmread('G:\zcuki.mtx')
ycaki=mmread('G:\ycuki.mtx')

 

For ML algorithm one needs global optimization method 
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import numpy as np
from scipy.optimize import minimize
import scipy.stats as stats

 

Let us define a Python function for the ML process. 

  

def regressLL(params):
 a0 = params[0]
 a1 = params[1]
 a2 = params[2]
 sd = params[3]
 yPred=a0+ a1*xcaki**0.5+a2*xcaki
 logLik = -np.sum(stats.norm.logpdf(ycaki,loc=yPred,scale=sd))
 return(logLik)

 

Guess the initial values of the parameters to be estimated 

  initParams=np.array([1,2,0,1]) 

Employing minimization of the negative ML function via Nelder-Mead method. 

  results = minimize(regressLL,initParams,method='nelder-mead') 

Then the results 

  results.x  

{0.16537,2.67272,-0.128974,1.25777}⇐  
g=%;⇒  
ye=g[[1]]+g[[2]] +g[[3]]xx⇒  
0.16537+2.67272 -0.128974xx⇐  

Figure 4.57 shows the estimated regression function 
Show[{pL,Plot[ye,{x,0,30},

PlotStyle {Red,Thin}]},PlotRange All,Frame True]

⇒
→ → →  

⇐   
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Fig. 4.57 The ML solution based on the EM data using Python code 



 

 

4.4.4  RANSAC for Linear Models 

The RANSAC method is proved to be successful for detecting and eliminating 
outliers. The basic RANSAC algorithm is as follows, 
1)  Pick up a model type (ℳ) for fitting 
2)  Input data as 

dataQ - data corrupted with outliers (cardinality (dataQ) = n) 
s - number of data elements required per subset 
N - number of subsets to draw from the data 
τ - threshold which defines if  data element, di ∈ dataQ, agrees with the 

model ℳ 

Remarks 

In general s can be the minimal number of the data which results a determined 
system for the unknown parameters of the model. 

The number of subsets to draw from the data, N is chosen high enough to 
ensure that at least one of the subsets of the random examples does not include an 
outliers (with the probability p, which is usually set to 0.99). Let u represent the 
probability that any selected data point is an inlier and 1= −v u  the probability of 
observing an outlier. Then the iterations N can be computed as 

( )
( )( )

log 1-
=

log 1- 1- s

p
N

v
 

3)  MaximalConsensusSet ← ∅ 
4)  Iterate N times: 

a) - ConsensusSet ← ∅ (this will contains the inliers) 
b) - Randomly draw a subset containing s elements and estimate the parame- 

ters of the model ℳ 
c) - For each data element, di ∈ dataQ: 

if agree (di, ℳ, τ), ConsensusSet ← di (the maximum level (threshold) of 
the local model error, which is a critical parameter of the method) 

d) - if cardinality (maximalConsensusSet) < cardinality(ConsensusSet), 
maximalConsensusSet ← ConsensusSet 

5)  Estimate model parameters using maximalConsensusSet. 

To illustrate the method, let us employ the Housing data set. From this 
multivariate data set we shall consider only a single variable problem (LSTAT) 
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and apply Python linear regression model. We concentrate here the elimination of 
the outliers. 

Loading the data set, 

  

import pandas as pd
df = pd.read_csv('https://raw.githubusercontent.com/rasbt/'

'python-machine-learning-book-2nd-edition'
'/master/code/ch10/housing.data.txt',
header=None,
sep='\s+')

df.columns=['CRIM','ZN','INDUS','CHAS','NOX','RM','AGE',
'DIS','RAD','TAX','PTRATIO','B','LSTAT','MEDV']

X = df[['LSTAT']].values
y = df['MEDV'].values      

 

where MEDV is the median value of owner occupied homes in $1000, and 
LSTAT is the percentage of lower status of the population. 

Save it for Mathematica 

  np.savetxt('G:\\daTaX.txt',X,fmt='%.5e')     

trainX=Import["G:\\daTaX.txt","Table"];⇒  
and 

  np.savetxt('G:\\daTay.txt',y,fmt='%.5e') 

trainy=Import["G:\\daTay.txt","Table"];⇒  
Then 
TrainX=Flatten[trainX];Trainy=Flatten[trainy];⇒  
data=Transpose[{TrainX,Trainy}];⇒  

Let us visualize the data, see Fig. 4.58. 
p0=ListPlot[data,Frame True,

FrameLabel {" percentage of lower status of the population",

"median value of owner occupied homes in $1000"},

PlotStyle PointSize[0.01]]

⇒ →
→

→
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https://raw.githubusercontent.com/rasbt/


 

⇐   
Fig. 4.58 The single variable problem from Housing data 

RANSAC method always requires a regression method, which should be 
integrated into the RANSAC algorithm, see steps 4. as well as in the Python code. 
In this example for sake of simplicity we employ linear regression (Straw 2009). 

Python 
Let us load the procedures 

  from sklearn.linear_model import LinearRegressionfrom sklearn.linear_model import RANSACRegressor  

We should parametrize the RANSAC Regressor function including linear 
regression as an estimation method. The most sensitive parameter is the threshold 
value. Using high threshold too many outliers can remains in the training set, 
using too low threshold one may eliminate also the inliers data points. 

  
ransac=RANSACRegressor(LinearRegression(),max_trials=100,
min_samples=50,loss='absolute_loss',
residual_threshold=5.0,random_state=0).fit(X,y)

 

The procedure will "masking in" the inliers as active data points 

  inlier_mask=ransac.inlier_mask_  

Saving inliers for linear regression 

  np.savetxt('G:\\maskedX.txt',X[inlier_mask],fmt='%.5e') 

  np.savetxt('G:\\maskedy.txt',y[inlier_mask],fmt='%.5e') 

Read data into Mathematica, 
Xinliers=Flatten[Import["G:\\maskedX.txt","Table"]];⇒  

   278 4  Regression



 

yinliers=Flatten[Import["G:\\maskedy.txt","Table"]];⇒  
Combining data points and display them, see Fig. 4.59. 
datainliers=Transpose[{Xinliers,yinliers}];⇒  
pinliers=ListPlot[datainliers,

Frame True,PlotStyle {Red,PointSize[0.01]}];

⇒
→ →  

Show[{p0,pinliers}]⇒  

⇐   
Fig. 4.59 The separating inliers (red) from outliers (blue) 

via RANSAC algorithm for Linear Regression 

Now we can fit a line to the inlier points via Mathematica, see Fig. 4.60. 

Mathematica 
lm=LinearModelFit[datainliers,x,x];⇒  
model=lm//Normal⇒  
29.8819 -0.746351 x⇐  

p1=Plot[model,{x,0,40}];⇒  
Show[{p0,pinliers,p1}]⇒  
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⇐   
Fig. 4.60 Fitting line to the inlier points (red) 

 
 
 

4.4.5  Fitting Lidar Cloud of Points to a Slope 

Outdoor laser scanning measurements have been carried out in a hilly park of 
Budapest, Hungary see Fig. 4.61. The test area is on a steep slope, covered with 
dense but low vegetation. 

 
Fig. 4.61 The test area in Budapest 

The measurement range of the scanner is 120 m, the ranging error is ± 2 mm, 
according to the manufacturer's technical specification (Fig. 4.62). 
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Fig. 4.62 The scanner at the top of the measured steep slope with the different sizes of 

white spheres as control points in the background 

The scanning parameters were set to ½ resolution that equals to 3mm/10m point 
spacing. This measurement resulted 178.8 million points that was acquired in 5 
and half minutes. The test data set was cropped from the point cloud; moreover, 
further resampling was applied in order to reduce the data size. The final data set 
is composed in ASCII format, and only the x, y, z coordinates were kept (no 
intensity values). Let us load the measured data: 
XYZ=Import["G:\\output_41_392.dat"];⇒  
n=Length[XYZ]⇒  
41392⇐  

Eliminating corrupted data points, 
XYZP=Select[XYZ,And[NumberQ[#[[1]]],NumberQ[#[[2]]],

NumberQ[#[[3]]]]&];

⇒
 

n=Length[XYZP]⇒  
33292⇐  

Figure 4.63 shows measured the cloud of points 
pS=ListPointPlot3D[XYZP,PlotStyle Blue,BoxRatios {1,1,1}]⇒ → →  
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⇐   
Fig. 4.63 The measured Lidar points 

Organizing data in a format ((x, y), z) 
XY=Map[{#[[1]],#[[2]]}&,XYZP];⇒  
Z=Map[#[[3]]&,XYZP];⇒  

Exporting for Python, 
Export["G:\\lidarxy.mtx",XY];⇒  
Export["G:\\lidarz.mtx",{Z}];⇒  

Preparation for reading data 

  
import numpy as np
from numpy import array, matrix
from scipy.io import mmread, mmwrite)

 

Reading data into Python 

  
X=mmread('G:\\lidarxy.mtx')
yy=mmread('G:\\lidarz.mtx') 

  y=yy[0] 

We employ Python code to eliminate outliers, but now with a lower threshold 
value, with 0.2, 

  
ransac=RANSACRegressor(LinearRegression(),max_trials=100,
min_samples=50,loss='absolute_loss',residual_threshold=0.2,
random_state=0).fit(X,y)
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The procedure will "masking in" the inliers as active data points, 

  inlier_mask=ransac.inlier_mask_  

Saving inliers for linear regression 

  np.savetxt('G:\\LmaskedX.txt',X[inlier_mask],fmt='%.5e') 

  np.savetxt('G:\\Lmaskedy.txt',y[inlier_mask],fmt='%.5e') 

Read data into Mathematica, 
Xinliers=Import["G:\\LmaskedX.txt","Table"];⇒  
yinliers=Flatten[Import["G:\\Lmaskedy.txt","Table"]];⇒  

The number of inlier points 
Length[Xinliers]⇒  
13267⇐  

Now we can fit a plane to the inliers via OLS, 
z=Fit[XYZPIn,{1,x,y},{x,y}]⇒  
202.723 +0.0817325 x+0.543778 y⇐  

Figure 4.64 shows the fitted plane as slope  covered by the vegetation 
ppS=Plot3D[z,{x,0,10},{y,0,10},BoxRatios {1,1,1}];⇒ →  
Show[{pS,ppS}]⇒  

⇐   
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Fig. 4.64 The slope fitted the points without the vegetation points as outliers 



 

4.5  Symbolic Regression Models 

Basic Theory 

In traditional regression the model y = f (w, x) is specified and the parameters (w) 
should be estimated from data (xi, yi). In case of symbolic regression the structure 
of the model is not fixed, and the result is a bunch of functions having different 
complexities and errors. These functions are generated automatically mostly via 
genetic algorithm. 

The algorithm will search for a set of basic functions (building blocks) and 
coefficients (weights) in order to minimize the error ε in case of given yi and xi 
pairs. 

The standard basic functions are constant, addition, subtraction, 
multiplication, division, sine, cosine tangent, exponential, power, square root, etc. 
In order to carry out genetic programming, the individuals (competing functions) 
should be represented by a binary tree. The leaves of the binary tree are called 
terminal nodes represented by variables and constants, while the other nodes, the 
so called non-terminal nodes are represented by functions. Let us see a simple 
example. Consider 

( ) 1 2 3
11
2

β = +i x x xx . 

Its binary tree representation can be seen in Fig. 4.65, 

 
Fig. 4.65 The binary tree representation of a basic function βi(x) 

There are two important features of the function represented by a binary tree: 
complexity and fitness. We define complexity as the number of nodes in a binary 
tree needed to represent the function, and fitness is basically a loss function 
characterizing how good the fitting of the function is. 
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The genetic algorithm tries to minimize this error to improve the fitness of the 
population consisting of individuals (competing functions) from generation to 
generation by mutation and cross-over procedure. Mutation is an eligible random 
change in the structure of the binary tree, which is applied to a randomly chosen 
sub-tree in the individual. This sub-tree is removed from the individual and 
replaced by a new randomly created sub-tree. This operation leads to a slightly 
(or even substantially) different basic function. 

The operation "cross-over" representing sexuality can accelerate the 
improvement of the fitness of a function more effectively than mutation alone can 
do. It is a random combination of two different basic functions (parents), based 
on their fitness, in order to create a new generation of functions, more fitter than 
the original functions. To carry out cross-over, crossing points (non-terminal 
nodes) in tree of both parents should be randomly selected. Then subtrees 
belonging to these nodes will be exchanged creating offsprings 

Complexity and fitness are conflicting features leading to a multiobjective 
problem, consequently we have not a single solution, but a set of optimal 
solutions. Pareto front represents the optimal solutions as they vary over 
expression complexity and maximum prediction error. 

4.5.1  Model with Single Variable 

Considering a function 

( ) ( )( ) [ ]( ) = sin 2 + exp cos , -10, 10∈y x x x x x . 

let us generate 500 data points with normally distributed noise: 
data=Table[{x, Sin[2x]+x Exp[Cos[x]]+

RandomVariate[NormalDistribution[0, 1.5]]}, 

{x, RandomReal[{-10, 10}, 500]}];

⇒

 

Figure 4.66 shows the synthetic data set, 
p0=ListPlot[data]⇒  
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⇐   
Fig. 4.66 Generated synthetic data set 

Mathematica 
We employ symbolic regression generating 10 000 model candidates, 
fit = FindFormula[data,x,10000, All,PerformanceGoal "Quality", 

SpecificityGoal 1];

⇒ →
→  

fitN=fit//Normal//Normal;⇒  
For example the 1st model is 

fitN[[1]]⇒  
20.0460717 0.975718 1.14309 [ ] 0.570206 [ ]

| 1.55681, 2.61224, 24 |

x x Cos x x Cos x

Score Error Complexity

⇐ + + + →
< → − → → >  

Error of this model 

fitN[[1]][[2]][[2]]⇒  
2.61224⇐  

Complexity of this model 

fitN[[1]][[2]][[3]]⇒  
24⇐  

The error and complexity of the first 64 models, 
Candidates=Map[{#[[2]][[2]],#[[2]][[3]]}&,fitN]⇒  
{{2.61224,24},{4.0778,12},{4.07834,12},{3.98106,13},

{4.05985,13},{3.96751,14},{3.97264,14},{3.98505,14},

{3.21578,24},{3.29983,24},{4.53344,13},{2.51369,37},

{62.2607,1},{62.2691,1},{62.3413,1},{62.23

⇐

6,3},{63.3603,5},

{62.8032,6},{64.3349,6},{61.5377,9},{61.54,9},{209.445,3}}

 

Length[Candidates]⇒  
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64⇐  
p2=ListPlot[Candidates,PlotStyle {PointSize[0.015],Blue},

AxesLabel {"Error","Complexity"}];

⇒ →
→  

Computing the best models, we shall find the very point of the convex hull of 
the models, which is closest to the ideal point (0,0). 

cH=ConvexHullMesh[Candidates];⇒  
These models represented the Pareto front, see Fig. 4.67. 
ParetoFront=MeshCoordinates[RegionBoundary[cH]]⇒  
{{2.61224,24.},{4.0778,12.},{2.51369,37.},{2.51708,37.},

{2.52518,37.},{2.53109,37.},{2.53592,37.},{2.53873,37.},

{2.56256,37.},{2.5822,37.},{2.58571,37.},{2.58605,37.},

{2.62998,37.},{2.71137,37.},{2.7

⇐

9758,37.},{2.8496,37.},

{2.87629,37.},{3.01352,37.},{3.14217,37.},{25.3261,1.},

{62.2566,1.},{62.2607,1.},{62.2691,1.},{62.3413,1.},{209.445,3.}}

 

p1=ListPlot[ParetoFront,PlotStyle {PointSize[0.015],Red}];⇒ →  
Show[{p2,p1,cH,p2,p1}]⇒  

⇐   
Fig. 4.67 Pareto front of the candidate models (red points) 

The best models (red) provide the smallest error among the models having the 
same complexity. The collection of these models are called Pareto front. 

The ideal point is the point (0, 0). The user can select the model from the 
Pareto front, which is closest to this point. 
Map[Norm[{{0,0}-#},1]&,ParetoFront]⇒  
{24.,12.,37.,37.,37.,37.,37.,37.,37.,37.,37.,37.,37.,37.,37.,

37.,37.,37.,37.,25.3261,62.2566,62.2607,62.2691,62.3413,209.445}

⇐
 

Norm[{{0,0}-ParetoFront[[2]]},1]⇒  
12.⇐  
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The optimal model, which is a compromise between complexity and error, is 
the 6th one, 
modelOptimal=

Select[fitN,{#[[2]][[2]],#[[2]][[3]]}==ParetoFront[[2]]&]

⇒
 

{1.28998 x+x Cos[x] <|Score -1.62928,

Error 4.0778,Complexity 12|>}

⇐ → →
→ →  

fitOpt=(modelOptimal//Normal)[[1,1]]⇒  
1.28998 x+x Cos[x]⇐  

Figure 4.68 shows the model 
Show[{p0,Plot[fitOpt,{x,-10,10},PlotStyle {Thin,Red}]}]⇒ →  

⇐   
Fig. 4.68 Approximation of the “optimal” model, a compromise between model error and 

model complexity 
 
On the other hand, the model having the smallest error, 
modelHighAccuracy=

Select[fitN,{#[[2]][[2]],#[[2]][[3]]}==ParetoFront[[3]]&]

⇒
 

{-0.00564615+1.02953 x Cos[x]+9.83944 Sin[0.179446 x]-

1.60851 Sin[0.447786 x]+1.83557 Sin[2.15024 x]

<|Score -1.84151,Error 2.51369,Complexity 37|>}

⇐
→

→ → →
 

fitHigh=(modelHighAccuracy//Normal)[[1,1]]⇒  
-0.00564615+1.02953 x Cos[x]+9.83944 Sin[0.179446 x]-

1.60851 Sin[0.447786 x]+1.83557 Sin[2.15024 x]

⇐
 

Figure 4.69 shows the model with the smallest error 
p1=Plot[fitHigh,{x,-10,10},PlotStyle {Thin,Red}];⇒ →  
Show[{p0,p1}]⇒  
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⇐   
Fig. 4.69 Model provides the smallest error but the higher complexity 

4.5.2  Surface Fitting 

This example demonstrates using the SymbolicRegressor to fit a symbolic 
relationship. Let's create some synthetic data based on the relationship: 

( ) 2 2, 1= − + −z x y x y y . 

Figure 4.70 shows the original surface 
2 2pi=Plot3D[x -y +y-1,x,-1,1,y,-1,1,BoxRatios 1,1,0.8]→⇒  

⇐   
Fig. 4.70 Surface to be approximated 
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Python 
Load some basic functions (Stephens 2016) 

  

from numpy import array, matrix
from scipy.io import mmread, mmwrite
from math import exp, sin, cos
function_set = ['add','sub','mul','div','sqrt','log','abs',

'neg','inv','max','min','sin','cos','exp']

 

Import Python Symbolic Regressor 

  
from gplearn.genetic import SymbolicRegressor
import numpy as np
from sklearn.utils.random import check_random_state

 

Create a data set on a 10×10 grid in [−1,1]×[−1,1] using function 
( ) 2 2, 1= − + −z x y x y y  

  

x0 = np.arange(-1, 1, 1/10.)
x1 = np.arange(-1, 1, 1/10.)
x0, x1 = np.meshgrid(x0, x1)
y_truth = x0**2 - x1**2 + x1 - 1

 

  
rng = check_random_state(0)
X_train = rng.uniform(-1,1,100).reshape(50,2)
y_train = X_train[:,0]**2 - X_train[:,1]**2 + X_train[:,1]-1

 

Parametrize the regressor and run it, 

  

est_gp = SymbolicRegressor(population_size=5000,
         generations=20, stopping_criteria=
         p_crossover=0.7, p_subtree_mutation=0.1,
         p_hoist_mutation=0.05, p_point_mutation=0.1,
         max_samples=0.9, verbose=1,
         parsimony_coefficient=0.01,

 random_state=0).fit(X_train, y_train)

 

    Population Average   |          Best Individual    | 
--- --------------------- ----------------------------- ---------- 
Gen Length    Fitness    Length   Fitness   OOB Fitness  Time Left 
0   38.13   458.57768152   5    0.32066597  0.55676354     1.61m 
1    9.97     1.70232723   5    0.32020176  0.62478715     1.16m 
2    7.72     1.94456344   11   0.23953666  0.53314818    57.92s 
3    5.41     0.99015681   7    0.23567635  0.71990626    49.56s 
4    4.66     0.89444336   11   0.10394641  0.10394641    43.49s 
5    5.41     0.94024238   11   0.06080204  0.06080204    38.96s 
6    6.78     1.09535926   11   0.00078147  0.00078147    35.26s 

The optimal model can be printed out analytical form, 

  
print(est_gp._program) 
sub(add(-0.999, X1), mul(sub(X1, X0), add(X0, X1))) 

which means 

(y-0.999)-(y-x)(x+y)//Expand⇒  
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2 2-0.999+x +y-y⇐  
This results are quite good, however in case of more complicated functions 

and in noisy environment gplearn is performing not too efficiently. In that case 
the use of a third party system the Eureqa is suggested which has a Python API 
(https://en.wikipedia.org/wiki/Eureqa). 

Mathematica 
For multivariable problems a third party Mathematica function (sym.m) is 
provided by https://github.com/paulknysh/sym (Knysh 2018) 
Get["M:\\sym.m"]⇒  

Now we generate 400 noisy data points, see Fig. 4.71. 
2 2data=Flatten[Table[x,y,x -y +y-1+

RandomVariate[NormalDistribution[0,0.1]],x,

RandomReal[-1,1,20],y,RandomReal[-1,1,20]],1];

⇒

 

Show[{pi,ListPointPlot3D[data,PlotStyle {Black,Black,Black}]}]⇒ →  

⇐   
Fig. 4.71 Noisy measurement 

Let us define the error function, 
Error[model_]:=Mean@Table[Abs[data[[i,3]]-model/.

{x data[[i,1]],y data[[i,2]]}],{i,Length[data]}]

⇒
→ →  

The real but “unknown” continuous model 
2 2modi=x -y +y-1⇒  

2 2-1+x +y-y⇐  
which provides the smallest error 

Error[modi]⇒  
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0.0817619⇐  
The running time is restricted 

time=500;⇒  
Number of cores for parallel computation 

ncores=6;⇒  
Basic functions, 

2uops= ,Sin[ ] ,Cos[ ] ,Ex{ p# [& x# & # & ] ;&}⇒  

Basic operations, 
bops={Times,Plus,Subtract,Divide,Power};⇒  

Basic variables, 
2 2vars:=1,x,y,x ,y ;⇒  

Maximal  number of operations used for building an expression 
nops=7;⇒  

The function Search provides the hundred best solutions. Best solution means 
solution which has smaller error. 
output=Search[time,ncores,uops,bops,vars,nops];//Quiet⇒  

The number of the randomly generated functions 
output[[2]]⇒  
612838⇐  

The first hundred solutions and their errors 
output[[1]]//TableForm⇒  

2

2 4

4

2

2

2 2

2 2

4 4

4 2

2 4

4 2 x

2 x x

2 x

2 2 (2x )

2 4 x

-1+x +y-y
0.081762 -1+x +y-y
0.127189 -1+x +y-y
0.157028 -1+x +y-y
0.159399 -1+x +y-y
0.222972 y-y -(y )
0.228777 y-((y ) )
0.240802 y-(y )
0.241115 y-y -(y )
0.241115

0.08

y-y -(

1 2

y

6

)

7⇐
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2 2

2 2 2

4

4

4

4

4

4

2 x8

4

0.276070 x +(-1+y)(1+y )
0.285933 -(1-x )+y+xy-y
0.286231 -1+x +y
0.286231 -1+x +y
0.286231 -1+x +y
0.286231 -1+x +y
0.286231 -1+x +y
0.286231 -1+x +y
0.287780 y-y -y
0.288424 -1+y-y

 

1

4

4

4

4

4

2 4 2

6

2 2 4

6

2 x

0.288424 -1+y-y
0.288424 -1+y-y
0.288424 -1+y-y
0.288424 -1+y-y
0.288424 -1+y-y
0.288531 -(1-y)-y+x y
0.289361 -1+y-y
0.289502 -1+y-y +x y
0.291606 -1+x +y
0.296542 y-(y ) 6

 

8

2

2

2 2 2

(4( 2

8

8

8

8

8

8 x

4 2 (2x y)

4 4 (x y)

0.296917 -1+x -(-y+y )
0.299028 -1+x 1+y ))+y
0.300774 -1+x +y
0.300774 -1+x +y
0.300774 -1+x +y
0.300774 -1+x +y
0.300774 -1+x +y
0.307047 -(x ) +y
0.309605 x -(x )
0.309605 x -(x )

 

2

4

4

8

8

4 8

2 4 2

2 - 2 y

1

2 x

x2 x

2 4

2 x

3 x

4 4 2

0.314205 -1+x -x +y
0.315808 y-(-1+x -y )
0.318623 y-((y )y )
0.320814 -1+x 6+y
0.327563 -(x ) +y
0.333546 y-(y )
0.334012 -1+y-y +y
0.334480 -(x ) +y
0.336557 (-1+y)(y )
0.338168 -1+x +y+x y

 

2

2

2

2

2 x

2 x

2 x

2 x

2 2 2

2 4

2 4 - 8

0.338454 y-(y )
0.338454 y-(y )
0.338454 y-(y )
0.338454 y-(y )
0.344800 y-(1-x +y )
0.347203 -1+y-x y
0.347222 -1+(x /y )x y
0.347675 -1+y
0.347675 -1+y
0.347675 -1+y
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2

2

2 3 2

2 2 2

2

2

2

0.347675 (-y+y )/y
0.347675 (-y+y )/y
0.347675 (-y +y )/y
0.347675 -1+y
0.347675 -1+y
0.347675 -1+y
0.347675 (-x +x y)/x
0.347675 (-y+y )/y
0.347675 (-y+y )/y
0.349789 -1+y-y

 

2

2

2

2

2

2 2

8 4

2

2

2

0.349789 -1+y-y
0.349789 -1+y-y
0.349789 -1+y-y
0.349789 -1+y-y
0.349789 -1+y-y
0.349955 -1+(1+x )y-y
0.350446 -1+y-x y
0.352353 -1+x +y
0.352353 -1+x +y
0.352353 -1+x +y

 

4

5

2

2

2

2

2 2

8 4

4 (1/x )

4 x

2 2 (2x y)

2 x2

8 2

0.352353 -1+x +y
0.352353 -1+x +y
0.352353 -1+x +y
0.352353 x -(y-y )/y
0.353078 -1+y+x y
0.353967 -1+y-(y )
0.356288 -1+(x ) y
0.357408 x -(x ) +y
0.359356 y-y -y
0.360486 -1+y-x y

 

4

4 2

4 8

2 2

2 2

2

2

2

2

2 2 2

0.360547 (-1+y)(1+y )
0.362652 -1+y+x y
0.363021 -1+y+x y
0.364334 -1+x +y+xy
0.364334 -1+x +y+xy
0.364987 (-1+x )(1-y)
0.364987 (-1+x )(1-y)
0.364987 (-1+x )(1-y)
0.365459 -1+y/(1+y )
0.366168 -1+x(x +y-y )

 

The best model 
model=output[[1]][[1]][[2]]⇒  

2 2-1+x +y-y⇐  
This system cannot be used for serious problems. The best software for 

symbolic regression for Mathematica is the DataModeler. (http://www.evolved-
analytics.com/)  
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4.6  Comparison of Regression Methods 

To register two chest images means to align them, so that common features 
overlap and differences, should there be any, between the two are emphasized and 
readily visible to the naked eye. We refer to the process of aligning two images 
as image registration. When registering images, we are determining a geometric 
transformation which aligns one image to fit another. For a number of reasons, 
simple image subtraction does not work. 

Suppose we have two images of a chest region, taken of the same subject, but 
at different times, say, six months ago (Fig. 4.72) and yesterday (Fig. 4.73). We 
need to align the six month old image, which we will call the source image (Fig. 
4.74), with the one acquired yesterday, the target image (Fig.4.75). 

We shall compare here the linear regression approach with the symbolic 
regression technique. 

Let us consider the target image as 

⇒  imgT= ; 

Fig. 4.72 Reference image 

The source image to be aligned to the target image 

⇒  imgS= ; 

Fig. 4.73 Source image 

Geometric Linear Regression Transform 
Automatic registration can be employ with built-in Mathematica function, 

⇒ →
→ →

 imgR=ImageAlign[imgT,imgS,Background Black,

Method "Keypoints",TransformationClass "Affine"] 
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⇐   
Fig. 4.74 Source image 

Let us compare the target image with the registered image 
⇒  GraphicsGrid[{{HighlightImage[imgT, imgR]}}] 

⇐   
Fig. 4.75 Target image and the registered image (red contour) 

A maximal value of the norm of the differences of the intensities of the test 
and registered images, 

⇒ ImageDifference[imgT,imgR]//ImageData//Max  
⇐ 0.941176  

As an alternative method let us try to find the parameters of a geometric 
transform. This regression technique requires corresponding points, keypoints of 
the source and target image. 

Keypoints are the same thing as interest points. They are spatial locations, or 
points in the image that define what is interesting or what stand out in the image. 
The reason why keypoints are special is because no matter how the image 
changes... whether the image rotates, shrinks/expands, is translated (all of these 
would be an affine transformation by the way...) or is subject to distortion (i.e. a 
projective transformation or homography), you should be able to find the same 
keypoints in this modified image when comparing with the original image. 

Let us employ built-in function 
⇒  z = ImageCorrespondingPoints[imgT, imgS];  

The number of these corresponding points, 
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⇒ Length[z[[1]]] 
⇐ 100  

We can visualize these points in both images (Fig. 4.76) 
⇒ GraphicsGrid[

{{HighlightImage[imgT,z[[1]]],HighlightImage[imgS,z[[2]]]}}] 

⇐     
Fig. 4.76 The corresponding keypoints 

We can find the linear geometric transformation between the two images, 
⇒ →{error,tf}=FindGeometricTransform[z[[1]],z[[2]],Method "RANSAC"] 

 
 
 
 
 

⇐

-7 -6

{0.397242,TransformationFunction[

1.040321 0.108086 -24.011696

-0.130625 1.042260 17.502997 ]}

9.41017×10 -5.13586×10 1.

 

Then the source image can be transformed accordingly (Fig. 4.77), 
⇒ {w,h}=ImageDimensions[imgS];  
⇒ →imgR=ImagePerspectiveTransformation[imgS,tf,DataRange Full] 

⇐   
Fig. 4.77 The registered image 

Let us compare the target image with the registered image (Fig. 4.78) 
⇒ GraphicsGrid[{{HighlightImage[imgT, imgR]}}]
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⇐   
Fig. 4.78 Target image and the registered image (red contour) 

A maximal value of the norm of the differences of the intensities of the test 
and registered images, 

⇒ ImageDifference[imgT, imgR]//ImageData//Max  
⇐ 0.941176  

Symbolic Regression Transform 

As we know, symbolic regression can provide different models (linear and 
nonlinear) with different complexity. Now we should consider functions for 
mapping the source image, (η, ξ) into the target or reference image, (x, y) namely 

( , )  ( , )x yη ξ → . 

We define two functions to be determined via nonlinear regression, 

( , )x f η ξ=  

and 

( , )y g η ξ= . 

Here we can employ again the corresponding keypoints, for example in form 
(η, ξ, x). 

⇒ fx=MapThread[({#2,#[[1]]}//Flatten)&,z]; 
⇒ fy=MapThread[({#2,#[[2]]}//Flatten)&,z]; 

Saving data for Eureqa software 
⇒ Export["M:\\dataX.dat", fx]; 
⇒ Export["M:\\dataY.dat", fy]; 

The result for ( , )x f η ξ=  can be seen in Table 4.4. The first model is the 
Pareto optimum- the closest model to the (0,0) points of the Pareto front. 
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Table 4.4 The solutions for ( ),x f η ξ=  

Models for the function ( ),x f η ξ=  Fit Complexity Remark 

1.04 + 0.1093 24.02η ξ −  0.042 9 Pareto optimum 
1.04 + 0.109 25.2 / 23.6η ξ η− −  0.041 14  

-5 21.05 + 0.11 -1.5610 24.7η ξ η −  0.041 15  

( )1.04 + 0.109 + 0.281sin 93.8 23.9η ξ ξ −  0.038 19  

( ) ( )1.04 + 0.109 + 0.142sin + 0.288sin 1.07 24η ξ ξ ηξ −  0.038 27  

 
Considering the Pareto optimum for ( , )y g η ξ= , too 

( , )  1.04  + 0.1083  24.02x f η ξ η ξ= =  − . 

( , )  0.131  + 1.04  17.4y g η ξ η ξ= = −  − . 

Now we can carry out the transform on the source image to get the registration 
image (Fig. 4.79) 

⇒

→ →

fg[x_,y_]:={1.04 x+0.1083 y-24.02,-0.131 x+1.04 y+17.4}

imgR=ImageForwardTransformation[imgS,fg[#[[1]],#[[2]]]&,

DataRange Full, Background  Black]
 

⇐   
Fig. 4.79 The registered image via symbolic regression 

Let us compare the registered image with the target image (Fig. 4.80), 
⇒ GraphicsGrid[{{HighlightImage[imgT, imgR]}}] 

⇐   
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Fig. 4.80 Target image and the registered image (red contour) 



 

A maximal value of the norm of the differences of the intensities of the test 
and registered images, 

⇒ ImageDifference[imgT, imgR] // ImageData // Max  
⇐ 1.  

Facit 

The symbolic regression takes a considerably longest time than the linear one, 
although it can provide better result as the linear one (see Table 1.1, solutions with 
higher complexity than the Pareto solution). Therefore, if the linear regression 
gives an acceptable approach, than this is the proper choice. 
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Chapter 5 
Neural Networks 
 
 
 
 
 
 
 
 
 
 
 A neural network is a machine learning program, or model, that makes decisions 
in a manner similar to the human brain, by using processes that mimic the way 
biological neurons work together to identify phenomena, weigh options and arrive 
at conclusions. 

Every neural network consists of layers of nodes, or artificial neurons—an 
input layer, one or more hidden layers, and an output layer. Each node connects 
to others, and has its own associated weight and threshold. If the output of any 
individual node is above the specified threshold value, that node is activated, 
sending data to the next layer of the network. Otherwise, no data is passed along 
to the next layer of the network. 

Neural networks rely on training data to learn and improve their accuracy over 
time. Once they are fine-tuned for accuracy, they are powerful tools in computer 
science and artificial intelligence, allowing us to classify and cluster data at a high 
velocity. Tasks in speech recognition or image recognition can take minutes versus 
hours when compared to the manual identification by human experts. 

Neural networks are sometimes called artificial neural networks (ANNs). They 
are a subset of machine learning at the heart of deep learning models. 

The most important techniques and types of networks are demonstrated by 
Python as well as Mathematica codes, respectively. 

5.1  Single Layer Perceptron 

Basic Theory 

Neural network is a special nonlinear model for classification, clustering as well 
as regression. A single layer network has m input nodes plus a virtual input, called 
bias, The weighted linear combination of these input values enter into the active 
node, where it will be transformed by a so called activation function (mostly 
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nonlinear). If this activation function is a threshold function, we call the network 
(Sullivan 2017) a Perceptron type network. The transformed signal will be the 
output of the network. In case of supervised learning this output will be compared 
with the labeled output value. During the training process the weights of the 
network will be modified in order to minimized the deviation between the actual 
and the labeled outputs, see Fig. 5.1. 

 

 

Fig. 5.1 The structure of a single layer Perceptron type neural network 

Starting Python session in Mathematica, 
⇒

→
→ →

session=

StartExternalSession[<|"System" "Python",

"Version" "3.5.4","Executable"

"C:\Users\Ben\AppData\Local\Programs\Python\Python35\

python.exe"|>]//Quiet

 

⇐ ExternalSessionObject[  

 

5.1.1  Single Layer Perceptron Classifier 

Here we employ such a network for classification. 

Python 
Let us load the Python code of a Perceptron type single layer network. 
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import numpy as np

class Perceptron(object):
    """Perceptron classifier.

    Parameters
    ------------
    eta : float
      Learning rate (between 0.0 and 1.0)
    n_iter : int
      Passes over the training dataset.
    random_state : int
      Random number generator seed for random weight
      initialization.

 

    Attributes
    -----------
    w_ : 1d-array
      Weights after fitting.
    errors_ : list
      Number of misclassifications (updates) in each epoch.

    """
    def __init__(self, eta=0.01, n_iter=50, random_state=1):
        self.eta = eta
        self.n_iter = n_iter
        self.random_state = random_state

 

    def fit(self, X, y):
      """Fit training data.

      Parameters
      ----------

 

      X : {array-like}, shape = [n_samples, n_features]
        Training vectors, where n_samples is the number of
          samples and n_features is the number of features.
      y : array-like, shape = [n_samples]
        Target values.

 

      Returns
      -------
      self : object

      """
      rgen = np.random.RandomState(self.random_state)
      self.w_=
        rgen.normal(loc=0.0,scale=0.01,size=1+X.shape[1])
      self.errors_ = []

 

      for _ in range(self.n_iter):
        errors = 0
        for xi, target in zip(X, y):
          update = self.eta * (target - self.predict(xi))
          self.w_[1:] += update * xi
          self.w_[0] += update
          errors += int(update != 0.0)
        self.errors_.append(errors)
      return self

 

5.1  Single Layer Perceptron 
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    def net_input(self, X):
        """Calculate net input"""
        return np.dot(X, self.w_[1:]) + self.w_[0]

    def predict(self, X):
        """Return class label after unit step"""
        return np.where(self.net_input(X) >= 0.0, 1, -1)

 

 
Data are downloaded from Python repository as  mglearn,  and saved for 

visualization with Mathematica , 

  
import mglearn
import numpy as np
X, y = mglearn.datasets.make_forge()
np.savetxt('M:\\dataX.txt',X,fmt='%.5e')

 

If the file is short, we do not write the data into a file. So in case of the labels, 
y 

  y    

{1,0,1,0,0,1,1,0,1,1,1,1,0,0,1,1,1,0,0,1,0,0,0,0,1,0}⇐  
v=%;⇒  

We relabel (1, 0) into (1, −1) suited to the threshold function in a better way 
z=Map[If[#==0,-1,1]&,v]⇒  
{1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1}⇐  

Import the data set and visualize it, see Fig. 5.2. 
u=Import["M:\\dataX.txt","Table"];⇒  

The data set to be classified can be standardized, which means shifting and 
rescaling the elements of list to have zero mean and unit sample variance. 

uu=Standardize[u];⇒  
class1={};class2={};⇒  
MapThread[If[#1==

-1,AppendTo[class1,#2],AppendTo[class2,#2]]&,{z,uu}];

⇒
 

p0=ListPlot[{class1,class2},PlotStyle {Green,Red},Frame True,

Axes None,PlotMarkers {Automatic,Large},AspectRatio 1]

⇒ → →
→ → →  
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⇐   
Fig. 5.2 Sample dataset to be classified 

Let us employ Python with the relabeled data 

  yy=[1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,  1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1]  

The training process 

  ppn=Perceptron(eta=0.5,n_iter=5000).fit(X,yy) 

Let us employ the trained network for prediction 

  ppn.predict(X)) 

{1,-1,1,-1,1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1}⇐  
zP=%;⇒  

The error of the classification on the training process 

zP-z⇒  
{1,-1,1,-1,-1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1}⇐  

Only one element is misclassified. 
Now we employ Mathematica with a “softer” threshold function as activation 

function, see Fig. 5.3 (Freeman 1994). 
Plot[Tanh[x],{x,-3,3}]⇒  

5.1  Single Layer Perceptron 
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⇐   
Fig. 5.3 Tanh(x) activation function 

In order to employ this layer we define a special layer, 
myL=ElementwiseLayer[Tanh[#]&]⇒  
ElementwiseLayer⇐

 

Mathematica 
Let us construct a single layer network with two dimensional input, 
net=NetInitialize@NetChain[

{LinearLayer[1,"Input" 2,"Biases" -1],myL}]

⇒
→ →  

NetChain⇐

 
Preparation of the training input → output data, 
trainingData=MapThread[#2 {#1}&,{z,uu}];⇒ →  

Then let us train the network, 
trained=NetTrain[net,trainingData,MaxTrainingRounds 10000]⇒ →  
NetChain⇐

 
zu=Map[trained[#]&,uu]//Flatten//Round⇒  
{1,-1,1,-1,0,1,1,-1,1,1,1,0,-1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,0}⇐  

The error of the network is 

zu=z⇒  
{0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,1}⇐  

Now we have three misclassified elements, see Fig. 5.4. 
Show[{p0,DensityPlot[trained[{x,y}],{x,-1.4,2.4},{y,-2,1.5},

PlotPoints 250,ColorFunction "CMYKColors"],p0}]

⇒
→ →  
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⇐   
Fig. 5.4 Result of the classification 

With steeper activation function (see Fig. 5.5) we can get more robust result (Fig. 
5.6). 
Plot[Tanh[5 x],{x,-3,3}]⇒  

⇐   
Fig. 5.5 Modified activation function 

myL=ElementwiseLayer[Tanh[5 #]&]⇒  
ElementwiseLayer⇐

 
net=NetInitialize@NetChain[

{LinearLayer[1,"Input" 2,"Biases" -1],myL}]

⇒
→ →  

NetChain⇐

 
trained1=NetTrain[net,trainingData,MaxTrainingRounds 10000]⇒ →  

NetChain⇐

 

5.1  Single Layer Perceptron 
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zu=Map[trained[#]&,uu]//Flatten//Round⇒  
{1,-1,1,-1,1,1,1,-1,1,1,1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,-1}⇐  
zu=-z⇒  
{0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}⇐  
Show[{p0,DensityPlot[trained1[{x,y}],{x,-1.4,2.4},{y,-2,1.5},

PlotPoints 250,ColorFunction "CMYKColors"],p0}]

⇒
→ →  

See Fig. 5.6. 

⇐   
Fig. 5.6 Result of the classification employing steeper tanh(5x) activation function 

Still, one element is misclassified but we have a considerable margin between 
the two classes hence the solution is more robust. 

5.2  Multi Layer Perceptron 

Basic Theory 

Employing more than one layer, we can considerably improve the efficiency of 
the nonlinear mapping of the network (Fig. 5.7). For example, linearly non-
separable classification problem can be solved using multi layer neural network, 
see Sect. 5.2.1. However the training algorithm for optimizing the network 
weights should be different and more complicated than in case of single layer 
networks. We should keep it in our minds that the network training is a 
multivariable, global optimization problem, which has more local optimums, and 
so many variables as many weights in the networks. One of the most popular 
training methods is the backpropagation technique, which can utilize the feature 
of the actual activation function (Deshpande 2017). 
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Fig. 5.7 Structure of multi layer neural network 

5.2.1  Multi Layer Perceptron Classifier 

Python 
Loading some standard procedure 

  
from numpy import array, matrix
from scipy.io import mmread, mmwrite
import numpy as np

 

Let us consider the moons data set (an artificial data set from Python 
sklearn.dataset library), which represents a linearly non-separable problem 
(Chollet 2018). 

  from sklearn.datasets import make_moonsX, y =make_moons(n_samples=100,noise=0.25,random_state=3) 

Save the coordinate pairs for Mathematica, 

  mmwrite('pubi.mtx',X) 

Import data into Mathematica, 
trainX=Import["pubi.mtx"];⇒  

The labels of the data points 

  y  

{1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0,1,

1,0,1,0,1,0,0,0,0,1,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,

1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,1,0,1,

1,0,1,1,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,

⇐

0}

 

Let us visualize the data set 
cluster=%;total=MapThread[{#1,#2}&,{trainX,cluster}];⇒  
clust1=Select[total,#[[2]]==0&];⇒  

5.2  Multi Layer Perceptron 
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clust2=Select[total,#[[2]]==1&];⇒  
pclust1=Map[#[[1]]&,clust1];⇒  
pclust2=Map[#[[1]]&,clust2];⇒  

Figure 5.8 shows the two clusters, 
p0=Show[{ListPlot[pclust1,PlotStyle {Green,PointSize[0.017]}],

ListPlot[pclust2,PlotStyle {Red,PointSize[0.017]}]}]

⇒ →
→  

⇐   
Fig. 5.8 The moons sample dataset to be classified 

Loading the network classifier 

  from sklearn.neural_network import MLPClassifierimport mglearn  

Employing Limited memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) 
Saputro and Widyaningsih (2017) method for optimization of the network 
weights, 

  mlp = MLPClassifier(solver='lbfgs', random_state=0).fit(X,y) 

Let us predict the membership of the training set 

  cupi=mlp.predict(X)cupi  

{1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0,1,

1,0,1,0,1,0,0,0,0,1,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,

1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,1,0,1,

1,0,1,1,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,

⇐

0}

 

Comparing the result with the training labels 

zu=%;⇒  
zu-cluster⇒  
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{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

⇐

0}

 

The classification for the training set is perfect. Let us try to visualize the result 
with Python 

  import matplotlib.pyplot as plt) 

  mglearn.plots.plot_2d_separator(mlp, X, fill=True, alpha=.3) 

  mglearn.discrete_scatter(X[:,0],X[:,1],y)

 Running Python under Mathematica here gives an error message! No worries! 

  plt.show() 

This Python command provide the figure in a separate window (Fig. 5.9), 

 
Fig. 5.9 Result of the classification via Python 

Mathematica 
Let us employ the following activation function, see Fig. 5.10. 
Plot[(Tanh[2x]+1)/2,{x,-2,2}]⇒  

5.2  Multi Layer Perceptron 
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⇐   
Fig. 5.10 The activation function 

The sigmoid layer, 
myL=ElementwiseLayer[(Tanh[2#]+1)/2&]⇒  
NetChain⇐

 
Let us define the following network 
net=NetInitialize@NetChain[{LinearLayer[15,"Input" 2],myL,

LinearLayer[15],ElementwiseLayer[Ramp],LinearLayer[1]},

"Input" {2}]

⇒ →

→
 

NetChain⇐

 
Visualization of the network, see 
NetGraph[net]⇒  

NetGraph⇐

 
Preparation of the training set 
trainingset=Map[#[[1]] {#[[2]]}&,total];⇒ →  

NetChain⇐

 
The computed labels 
uu=Map[#[[1]]&,trainingset];⇒  

⇒ zu=Map[NetTrain[#]&,uu]//Flatten//Round  
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{1,1,0,1,1,1,1,0,0,0,1,0,1,1,0,1,1,0,1,0,1,0,0,0,1,

1,0,1,0,1,0,0,0,0,1,0,1,1,0,0,0,0,0,0,1,1,1,1,1,0,

1,1,1,1,0,1,1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,1,1,0,1,

1,0,1,1,0,1,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,1,

⇐

0}

 

The error 

zu-cluster⇒  
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,

⇐

0}

 

Let us visualize the result, see Fig. 5.11. 
Show[{p0,DensityPlot[trained[{x,y}]//Flatten//Round,{x,-1.4,1.8},

{y,-0.6,1.5},PlotPoints 50],p0},AspectRatio 0.9]

⇒
→ →  

⇐   
Fig. 5.11 Results of the classification via Mathematica 

5.2.2  Multi Layer Perceptron Regressor 

Neural network can also be also efficiently employed for regression (Melnikov 
2017). Let us illustrate this ability with the regression of a single variable function. 

Python 
Loading the Python regressor 

5.2  Multi Layer Perceptron 
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from sklearn.neural_network import MLPRegressor
import numpy as np
import matplotlib.pyplot as plt
import random

 

Generating the points for the independent variables 

  x=np.arange(0.,1.,0.01).reshape(-1,1) 

The function values 

  
y=np.sin(0.3*np.pi*x).ravel()+np.cos(3*np.pi*x*x).ravel()+
np.random.normal(0,0.15,x.shape).ravel()

y
 

{0.90955,1.11354,1.1036,0.94152,0.651125,0.756493,1.08785,0.96283,

0.90550,1.05755,1.08715,0.89628,1.21879,1.12197,1.35395,1.32278,

1.06119,1.33492,0.98626,1.16188,0.87097,1.39854,1.12806,0.97950,

1.51

⇐

M
184,1.41921,1.57758,1.29661,1.34853,1.02236,0.81539,0.63867,

0.519081,0.516352,0.360143,0.064391,0.14143,-0.305298,-0.388398}

 

g=%;⇒  
Let us visualize the data points, see Fig. 5.12. 
ListPlot[g]⇒  

⇐   
Fig. 5.12 Noisy data of a function to be approximated 

We consider a neural network 12 layers with tanh(x) activation function. 
Using the same LBFGS optimization we train the net (Raschka 2018). 

  nn=MLPRegressor(hidden_layer_sizes=(12),activation='tanh',solver='lbfgs').fit(x,y)  

Let us employ it for these test points as input values 

  test_x=np.arange(-0.01,1.02,0.01).reshape(-1,1)test_y=nn.predict(test_x)  
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The visualization 

  fig = plt.figure() 

  ax1=fig.add_subplot(111) 

  ax1.scatter(x,y,s=5,c='b',marker="o",label='real') 

The error message does not mean problem. 

  ax1.plot(test_x,test_y,c='r',label='NN Prediction') 

The results can be seen in Fig. 5.13. 

  plt.show() 

 
Fig. 5.13 Function approximation via Python 

Mathematica 
The training data (Fig. 5.14) 
yp=g;n= Length[yp];⇒  
xp=Table[i 0.01,{i,1,n}];⇒  
data=Transpose[{xp,yp}];⇒  
p0=ListPlot[data,Frame True,Axes None]⇒ → →  

5.2  Multi Layer Perceptron 
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⇐   
Fig. 5.14 The training data 

trainingdata=Map[{#[[1]]} {#[[2]]}&,data];⇒ →  
Initializing the network 
net=NetInitialize@NetChain[{LinearLayer[12,"Input" 1],

ElementwiseLayer[Tanh],LinearLayer[5],

ElementwiseLayer[Tanh],LinearLayer[1]},"Input" {1}]

⇒ →

→
 

NetChain⇐
 

NetGraph[net]⇒  

NetGraph⇐

 
Training the network 
trained=NetTrain[net,trainingdata]⇒  

NetChain⇐
 

The result of Mathematica can be seen in Fig. 5.15. 
Show[{p0,Plot[trained[u],{u,0,1},PlotStyle Red]},

Frame True,Axes None]

⇒ →
→ →  
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⇐   
Fig. 5.15 Function approximation via Mathematica 

5.3  Hopfield Network 

Basic Theory 

This most simple dynamical network has been developed basically to solve 
classification problem (Haykin 2009). The aim was to avoid iteration in the 
training process. However employing the trained network for classification 
(recognition) one need successive mapping. The network has one layer and every 
node has feedback from the output of other nodes beside its own node, see Fig. 
5.16 in case of n = 2 nodes 

 
Fig. 5.16 Discrete Hopfield network for n = 2 nodes 

The network represents an auto associative memory, which means that its 
output is associated to its input, in our case 

( )
( )

( )
( )

1 1 1
2 1 2

ψ
    +

=         +    

x t x t
W

x t x t
 

where W is a constant weight matrix represented by the fixed points of the network 
and ψ is the Signum function as activation function. For a fixed point vector 

5.3  Hopfield Network  



318  5   Neural Networks 

( )ψ=F Fx Wx . 

The vector should be bipolar vectors having elements 1 or −1. Let us consider 
the weight matrix to be computed without iteration. As an example, let two fixed 
points be 

1 1
= 1 and = 1

1 1

   
   −   
   −   

a b . 

Then, the weight matrix W can be computed as a sum of the outer product of 
these vectors, namely 

( ) ( )
1 1 2 0 0
1 1 1 1 1 1 1 1 0 2 2
1 1 0 2 2

     
     = + = × − + − − × = −     
     − −     

T TW a a b b . 

Applying the network to one of the fixed points, for example 

( )
2 1
4 1
4 1

ψ ψ
   
   = = =   
   − −   

Wa a . 

When an input vector is close to one of the fixed points, then the network output 
will converge to this fixed point vector. However, it may happen that for an input 
vector, an unknown output is obtained. 

5.3.1  Recovery of Digits 

The first elementary example illustrates how to recover a digit from its 
deteriorated digital image. We consider three digits 0, 1 and 2 as equilibrium 
points of our network and try to recognize imperfect digits, which can be similar 
to the equilibrium (attractor) digits (Srinivasan et al. 1993). 

Python 
Load the procedures to handle arrays 

  import numpy as npfrom neupy import algorithms  

A binary image of zero digit in bipolar representation of 5×5 resolution. In 
Python we should use binary, not bipolar representation 
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zero=np.matrix([
0, 1, 1, 1, 0,
1, 0, 0, 0, 1,
1, 0, 0, 0, 1,
1, 0, 0, 0, 1,
1, 0, 0, 0, 1,
0, 1, 1, 1, 0
])

 

In vector form 

  zero  

{{0,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,0,1,1,1,0}}⇐  
zero=%;⇒  

Let us visualize it in Mathematica, see Fig. 5.17. 
Partition[zero//Flatten,5]//MatrixForm⇒  
0 1 1 1 0

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

0 1 1 1 0

 
 
 
 
 
 






⇐







 

MatrixPlot[%,Mesh True]⇒ →  

⇐   
Fig. 5.17 Zero digit, using Python 

Similarly, the digits 1 and 2 can be represented by (Fig. 5.18) 

  

one=np.matrix([
0, 0, 1, 0, 0,
0, 1, 1, 0, 0,
1, 0, 1, 0, 0,
0, 0, 1, 0, 0,
0, 0, 1, 0, 0,
0, 0, 1, 0, 0
])

 

  one

 

5.3  Hopfield Network  
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{{0,0,1,0,0,0,1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0}}⇐  
one=%;⇒  
Partition[one//Flatten,5]//MatrixForm⇒  
0 0 1 0 0

0 1 1 0 0

1 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

 
 
 
 
 
 






⇐







 

MatrixPlot[%,Mesh True]⇒ →  

⇐   
Fig. 5.18 Digit 1 using Python 

  

two=np.matrix([
0, 1, 1, 0, 0,
1, 0, 0, 1, 0,
0, 0, 0, 1, 0,
0, 1, 1, 0, 0,
1, 0, 0, 0, 0,
1, 1, 1, 1, 1
])

 

  two

 {{0,1,1,0,0,1,0,0,1,0,0,0,0,1,0,0,1,1,0,0,1,0,0,0,0,1,1,1,1,1}}⇐  
(see, Fig. 5.19) 
two=%;⇒  
Partition[two//Flatten,5]//MatrixForm⇒  
0 1 1 0 0

1 0 0 1 0

0 0 0 1 0

0 1 1 0 0

1 0 0 0 0

1 1 1 1 1

 
 
 
 
 
 






⇐







 

MatrixPlot[%,Mesh True]⇒ →  
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⇐   
Fig. 5.19 Digit 2 using Python 

Preparation of the fixed points data for Python 

  data = np.concatenate([zero, one,two], axis=0)

 Loading discrete Hopfield network and training it 

  dhnet = algorithms.DiscreteHopfieldNetwork(mode='sync')
dhnet.train(data)

 

Let us try to employ our trained network for recognizing an imperfect zero 
digit, Fig. 5.20. 

  

half_zero=np.matrix([
0, 1, 1, 1, 0,
1, 0, 0, 0, 1,
1, 0, 0, 0, 1,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0
])

 

  half_zero

 {{0,1,1,1,0,1,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}⇐  
halfzero=%;⇒  
Partition[halfzero//Flatten,5]//MatrixForm⇒  
0 1 1 1 0

1 0 0 0 1

1 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 
 
 
 
 
 






⇐







 

MatrixPlot[%,Mesh True]⇒ →  

5.3  Hopfield Network  
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⇐   
Fig. 5.20 Imperfect digit 0 

Now let us employ our Hopfield net to try to recover the digit 

  result = dhnet.predict(half_zero)
result

 

{{0,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,0,1,1,1,0}}⇐  

The result is shown by Fig. 5.21. 
z=%;⇒  
Partition[z//Flatten,5]//MatrixForm⇒  
0 1 1 1 0

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

1 0 0 0 1

0 1 1 1 0

 
 
 
 
 
 






⇐







 

MatrixPlot[%,Mesh True]⇒ →  

⇐   
Fig. 5.21 Recovered digit 0 

Now let us try the same with a deteriorated digit 2, see Fig. 5.22. 
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half_two=np.matrix([
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 1, 1, 0, 0,
1, 0, 0, 0, 0,
1, 1, 1, 1, 1
])

 

  half_two

 {{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,1,1,1,1,1}}⇐  
z=%;⇒  
Partition[z//Flatten,5]//MatrixForm⇒  
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 1 0 0

1 0 0 0 0

1 1 1 1 1

 
 
 
 
 
 






⇐







 

MatrixPlot[%,Mesh True]⇒ →  

⇐   
Fig. 5.22 Deteriorated digit 2 

The result can be seen in Fig. 5.23. 

  result = dhnet.predict(half_two)
result

 

{{0,1,1,0,0,1,0,0,1,0,0,0,0,1,0,0,1,1,0,0,1,0,0,0,0,1,1,1,1,1}}⇐  
z=%;⇒  
Partition[z//Flatten,5]//MatrixForm⇒  
0 1 1 0 0

1 0 0 1 0

0 0 0 1 0

0 1 1 0 0

1 0 0 0 0

1 1 1 1 1

 
 
 
 
 
 






⇐







 

5.3  Hopfield Network  
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MatrixPlot[%,Mesh True]⇒ →  

⇐   
Fig. 5.23 Recovered deteriorated digit 2 

Now let us try a different image, see Fig. 5.24. 

  

half_what=np.matrix([
1, 1, 1, 0, 0,
0, 0, 0, 1, 0,
0, 0, 0, 1, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0,
0, 0, 0, 0, 0
])

 

  half_what

 {{1,1,1,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0}}⇐  
z=%;⇒  
Partition[z//Flatten,5]//MatrixForm⇒  
1 1 1 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 
 
 
 
 
 






⇐







 

MatrixPlot[%,Mesh True]⇒ →  

⇐   
Fig. 5.24 A piece of what (an unknown image to be recognized) as input 
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Employing our net, we get an unknown equilibrium "digit", see Fig. 5.25 
 

  result = dhnet.predict(half_what)
result

 

{{0,0,1,0,0,1,1,1,0,0,1,0,1,0,0,0,1,1,0,0,1,0,1,0,0,1,1,1,1,1}}⇐  
z=%;⇒  
Partition[z//Flatten,5]//MatrixForm⇒  
0 0 1 0 0

1 1 1 0 0

1 0 1 0 0

0 1 1 0 0

1 0 1 0 0

1 1 1 1 1

 
 
 
 
 
 






⇐







 

MatrixPlot[%,Mesh True]⇒ →  

⇐   
Fig. 5.25 Unknown equilibrium as response 

Unknown fixed point! We can solve this problem using the asynchronous 
network approach. 

  from neupy import environmentenvironment.reproducible()  

In addition let us employ 400 iterations for recognition 

  dhnet.mode='async'dhnet.n_times=400  

  result = dhnet.predict(half_what)
result

 

{{0,0,1,0,0,0,1,1,0,0,1,0,1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1,0,0}}⇐  

Now, we can find a proper fixed point, see Fig. 5.26. 
z=%;⇒  
Partition[z//Flatten,5]//MatrixForm⇒  

5.3  Hopfield Network  
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0 0 1 0 0

0 1 1 0 0

1 0 1 0 0

0 0 1 0 0

0 0 1 0 0

0 0 1 0 0

 
 
 
 
 
 






⇐







 

MatrixPlot[%,Mesh True]⇒ →  

⇐   
Fig. 5.26 Unknown equilibrium 

Mathematica 
Hopfield network is not implemented in the latest version of Mathematica 14.0. 
The following statement can be evaluated in Mathematica 14.0 with Neural 
Networks Application Package. 

Loading the package 

<<NeuralNets` 
This function converts the binary input into bipolar input 
fun[u_]:=Map[If[#==0,-1,#]&,u]⇒  

The training set, 
x=Map[fun[#]&,{zero,one,two}]⇒  
{{-1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,

1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,1,1,-1},

{-1,-1,1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,-1,

-1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1},

{-1,1,1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,

⇐

1,-1,

-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,1}}

 

The generated network 
hop=HopfieldFit[x]⇒  
Hopfield[W,{NetType Discrete,

CreationDate {2018,10,19,10,31,38.4608273}}]

⇐ →
→  

Solving the reconstruction problems, see Figs. 5.27 and 5.28 
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halfzeroM=fun[halfzero]⇒  
{-1,1,1,1,-1,1,-1,-1,-1,1,1,-1,-1,-1,1,-1,

-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}

⇐
 

hop[halfzeroM]⇒  
{{-1.,1.,1.,1.,-1.,1.,-1.,-1.,-1.,1.,1.,-1.,-1.,-1.,

1.,1,-1.,-1.,-1.,1,1,-1.,-1.,-1.,1,-1.,1,1,1,-1.}}

⇐
 

Partition[%//Flatten,5]⇒  
{{-1.,1.,1.,1.,-1.},{1.,-1.,-1.,-1.,1.},{1.,-1.,-1.,-1.,1.},

{1,-1.,-1.,-1.,1},{1,-1.,-1.,-1.,1},{-1.,1,1,1,-1.}}

⇐
 

MatrixPlot[%,Mesh True]⇒ →  

⇐   
Fig. 5.27 Reconstructed zero 

halftwoM=fun[halftwo]⇒  
{-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,

-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,1}

⇐
 

hop[halftwoM]⇒  
{{-1.,1,1,-1.,-1.,1,-1.,-1.,1,-1.,-1.,-1.,-1.,1,-1.,

-1.,1.,1.,-1.,-1.,1.,-1.,-1.,-1.,-1.,1.,1.,1.,1.,1.}}

⇐
 

Partition[%//Flatten,5]⇒  
{{-1.,1,1,-1.,-1.},{1,-1.,-1.,1,-1.},{-1.,-1.,-1.,1,-1.},

{-1.,1.,1.,-1.,-1.},{1.,-1.,-1.,-1.,-1.},{1.,1.,1.,1.,1.}}

⇐
 

MatrixPlot[%,Mesh True]⇒ →  

⇐   
Fig. 5.28 Reconstructed two 

5.3  Hopfield Network  
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Mathematica Hopfield function can solve the third problem without any 
modification however it provides different fixed points. Instead of digit 1 
identified by asynchronous network, now we get digit 2, see Fig. 5.29 

halfwhatM=fun[halfwhat]⇒  
{1,1,1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,

-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1}

⇐
 

hop[halfwhatM]⇒  
{{-1,1.,1.,-1.,-1.,1,-1.,-1.,1.,-1.,-1.,-1.,-1.,1.,

-1.,-1.,1,1,-1.,-1.,1,-1.,-1.,-1.,-1.,1,1,1,1,1}}

⇐
 

Partition[%//Flatten,5]⇒  
{{-1,1.,1.,-1.,-1.},{1,-1.,-1.,1.,-1.},{-1.,-1.,-1.,1.,-1.},

{-1.,1,1,-1.,-1.},{1,-1.,-1.,-1.,-1.},{1,1,1,1,1}}

⇐
 

MatrixPlot[%,Mesh True]⇒ →  

⇐   
Fig. 5.29 Reconstructed the piece of what (response of Mathematica for input in 5.24) 

5.3.2  Reconstruction of Deteriorated Images 

We create a Hopfield network with three fixed points. The state vectors have 400 
elements representing binarized images of size 20×20. The images are face, sword 
and cottage, see Fig. 5.30. 

Loading images 
H1=Import["M:\\Pink\\Head.dat"];⇒  
S1=Import["M:\\Pink\\Sword.dat"];⇒  
P1=Import["M:\\Pink\\Home.dat"];⇒

 
Converting into binary form 
H1=H1/.{255 1};S1=S1/.{255 1};P1=P1/.{255 1};⇒ → → →  
H1//MatrixForm⇒  
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1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1

1 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1

0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
⇐

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1

1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1

1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

p1=ListDensityPlot[

H1//Reverse,ColorFunction GrayLevel,Mesh True];

⇒
→ →  

p2=ListDensityPlot[

S1//Reverse,ColorFunction GrayLevel,Mesh True];

⇒
→ →  

p3=ListDensityPlot[

P1//Reverse,ColorFunction GrayLevel,Mesh True];

⇒
→ →  

GraphicsGrid[{{p1,p2,p3}}]⇒  

⇐   
Fig. 5.30 The fixed points of the network: face, sword and cottage 

The deteriorated images are, see Fig. 5.31.
 

Hd=Import["M:\\Pink\\Head4.dat"];⇒  
Sd=Import["M:\\Pink\\Sword4.dat"];⇒  
Pd=Import["M:\\Pink\\Home4.dat"];⇒  
Hd=Hd/.{255 1};Sd=Sd/.{255 1};Pd=Pd/.{255 1};⇒ → → →  
p1d=ListDensityPlot[

Hd//Reverse,ColorFunction GrayLevel,Mesh True];

⇒
→ →  

5.3  Hopfield Network  
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p2d=ListDensityPlot[

Sd//Reverse,ColorFunction GrayLevel,Mesh True];

⇒
→ →  

p3d=ListDensityPlot[

Pd//Reverse,ColorFunction GrayLevel,Mesh True];

⇒
→ →  

GraphicsGrid[{{p1d,p2d,p3d}}]⇒  

⇐   
Fig. 5.31 The deteriorated images as input 

Saving data for Python 

P1n={Flatten[H1]};P2n={Flatten[S1]};P3n={Flatten[P1]};⇒  
Pdn={Flatten[Hd]};P2d={Flatten[Sd]};P3d={Flatten[Pd]};⇒  
Export["cuki1.mtx",P1n];⇒  
Export["cuki2.mtx",P2n];⇒  
Export["cuki3.mtx",P3n];⇒  
Export["cuki11.mtx",Pdn];⇒  
Export["cuki21.mtx",P2d];⇒  
Export["cuki31.mtx",P3d];⇒  

Python 
Loading basic procedure and data set 

  from numpy import array, matrixfrom scipy.io import mmread, mmwrite  

  

caki1=mmread('cuki1.mtx')
caki2=mmread('cuki2.mtx')
caki3=mmread('cuki3.mtx')
caki11=mmread('cuki11.mtx')
caki21=mmread('cuki21.mtx')
caki31=mmread('cuki31.mtx')

 

  data = np.concatenate([caki1, caki2,caki3], axis=0)

 Training the network (Shevchuk 2015) 

  dhnet = algorithms.DiscreteHopfieldNetwork(mode='sync')
dhnet.train(data)

 

Reconstructed the deteriorated images, see Figs. 5.32, 5.33 and 5.34. 

  t=dhnet.predict(caki11)mmwrite('cico.mtx',t)  
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z=Import["cico.mtx"];⇒  
pp=Partition[Reverse[Flatten[z]],20];⇒  
ListDensityPlot[pp,ColorFunction GrayLevel,Mesh True]⇒ → →  

⇐   
Fig. 5.32 Reconstructed face 

  t=dhnet.predict(caki21)mmwrite('cico.mtx',t)  

z=Import["cico.mtx"];⇒  
pp=Partition[Flatten[z],20]//Transpose//Reverse;⇒  
ListDensityPlot[pp,ColorFunction GrayLevel,Mesh True]⇒ → →  

⇐   
Fig. 5.33 Reconstructed sword 

  t=dhnet.predict(caki31)mmwrite('cico.mtx',t)  

z=Import["cico.mtx"];⇒  
z=%;⇒  
pp=Partition[Flatten[z],20]//Reverse;⇒  
ListDensityPlot[pp,ColorFunction GrayLevel,Mesh True]⇒ → →  

⇐   
Fig. 5.34 Reconstructed cottage 

5.3  Hopfield Network  
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Mathematica 
In case of Mathematica, we need bipolar representation of the pixel values 
H1b=H1/.{255 1,0 -1};S1b=S1/.{255 1,0 -1};⇒ → → → →  
P1b=P1/.{255 1,0 -1};⇒ → →  

Preparation of the training data 
x=Map[Partition[#,20]&,{H1b,S1b,P1b}];⇒  
xv = Map[Flatten, x, {1}];⇒  

Training Hopfield network 
hopD = HopfieldFit[xv]⇒  
Hopfield[W,{NetType Discrete,

CreationDate {2016,10,27,13,6,47.0610803}}]

⇒ →
→  

Preparation of deteriorated data 
Hdb=Hd/.{255 1,0 -1};Sdb=Sd/.{255 1,0 -1};⇒ → → → →  
Pdb=Pd/.{255 1,0 -1};⇒ → →  
xd=Map[Partition[#,20]&,{Hdb,Sdb,Pdb}];⇒  

The reconstructed images, see Figs. 5.35, 5.36 and 5.37. 
x1v = Map[Flatten, xd, {1}][[1]];⇒  
y1=hopD[x1v];⇒  
ListDensityPlot[Partition[First[y1],20],

FrameTicks None,Mesh True,ColorFunction GrayLevel]

⇒
→ → →  

⇐   
Fig. 5.35 Reconstructed face 

x2v = Map[Flatten, xd, {1}][[2]];⇒  
y2=hopD[x2v];⇒  
ListDensityPlot[Partition[First[y2],20],

FrameTicks None,Mesh True,ColorFunction GrayLevel]

⇒
→ → →  

⇐   
Fig. 5.36 Reconstructed sword 
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x3v = Map[Flatten, xd, {1}][[3]];⇒  
y3=hopD[x3v];⇒  
ListDensityPlot[Partition[First[y3],20],

FrameTicks None,Mesh True,ColorFunction GrayLevel]

⇒
→ → →  

⇐   
Fig. 5.37 Reconstructed cottage 

In case of the cottage recognition, the images belonging to one of the iteration 
steps 1., 26., 52., 78., and 104 can be seen in Fig. 5.38 illustrating the evolution 
of the recognition process. 
y3T=hopD[x3v,Trajectories True][[1]];⇒ →  
yy3=Map[Partition[#,20]&,

{y3T[[1]],y3T[[26]],y3T[[52]],y3T[[78]],y3T[[104]]}];

⇒
 

yyg=(ListDensityPlot[#1,DisplayFunction Identity,

FrameTicks None,Mesh True,

ColorFunction GrayLevel]&)/@yy3;Show[GraphicsGrid[{yyg}]]

⇒ →
→ →

→
 

⇐   
Fig. 5.38 Reconstructed steps of the cottage 

 

5.4  Unsupervised Network 

Basic Theory 

This type of networks represents an unsupervised learning technique, very similar 
to clustering. The network tries to find clusters and the centers of these clusters in 

5.4  Unsupervised Network  
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a data set (Usama et al. 2017). The most simple approach is the so called 
competitive learning method. The basic algorithm is the following: 
1) Randomly generate K codebook vectors representing the centers of K clusters, 

wi = 1,2,...K  
2) Randomly choosing a data element, xk from M total elements and compute its 

distance from every center, 
3) Let us suppose that the winner codebook vector, the closest to the data point is 

the i-th codebook 
4) Then we modify the position of this codebook vector as   

( )( )Δ= + −new old old
i i k iw w n x w  

see Fig. 5.39 

 
Fig. 5.39 Modification of the winner codebook vector 

It means that this codebook vector will be moved a bit towards the xk data 
element, where Δ(n) is the step-size, which may depend on the actual number of 
the iteration steps 
5) Steps 1) - 4) are repeated M times. 
6) We repeat steps 1) - 5) until there is no further change in the position of the 

code book vectors 
 

Remarks 

a) The algorithm minimizes the sum of the distances for all of the codebook 
vectors (Shevchuk 2017), 

( ) ( )1, 2, ,
1

...,
= =

= −∑∑
i

i

MK

K i k i
i k k

S w w w x w  

b) It may happen that there are codebook vectors which were never winners, so 
there is no data element belonging to them. These are called dead codebooks. 
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Let us consider the following simple data set, and visualize it, see Fig. 5.40. 
x={{0.1961`,0.9806`},{-0.1961`,0.9806`},{0.9806`,0.1961`},

{0.9806`,-0.1961`},{-0.5812`,-0.8137`},{-0.8137`,-0.5812`}};

⇒
 

p1=ListPlot[x,PlotStyle {PointSize[0.025],RGBColor[1,0,0]},

Frame True,Axes None]

⇒ →
→ →  

⇐   
Fig. 5.40 Simple data set 

Mathematica 
Loading the package 

<<NeuralNetworks`⇒  
Let us initialize the network, assuming three clusters 
unsup=InitializeUnsupervisedNet[x,3];⇒  

The training process, see Fig. 5.41. 
{unsup,fitrecord}=

UnsupervisedNetFit[x,unsup,50,ReportFrequency 5];

⇒
→  

⇐   
Fig. 5.41 Convergency of the training process 

5.4  Unsupervised Network  

5.4.1  Illustrative Example 



336  5   Neural Networks 

During this process the sum of the distances of the elements from their 
corresponding codebook centers for all cluster will be minimized. In our case the 
minimum is, 
UnsupervisedNetDistance[unsup,x]⇒  
0.185535⇐  

Figure 5.42 shows the trajectories of the moving codebook centers 
NetPlot[fitrecord,x]⇒  

⇐   
Fig. 5.42 The colored lines are the moving paths of the codebook centers. 

The black lines represent the linear border of the clusters 
 
The coordinates of the three centers 
unsup[[1]]⇒  
{{-0.680196,-0.71353},{0.980579,-0.0326197},{-0.0156818,0.980122}}⇐  

Python 
Loading procedures and the data 

  
import numpy as np
from neupy import algorithms, environment
environment.reproducible()

 

  

input_data = np.array([
[0.1961, 0.9806],
[-0.1961, 0.9806],
[0.9806, 0.1961],
[0.9806, -0.1961],
[-0.5812, -0.8137],
[-0.8137, -0.5812],
])

input_data    

 

{{0.1961,0.9806},{-0.1961,0.9806},{0.9806,0.1961},

{0.9806,-0.1961},{-0.5812,-0.8137},{-0.8137,-0.5812}}

⇐
 

Loading the network algorithm and parametrize the function, 



  337 

  

sofmnet = algorithms.SOFM(
  n_inputs=2,

    n_outputs=3,
    step=0.5,
    show_epoch=100,
    shuffle_data=True,
    verbose=True,
    learning_radius=0,
    features_grid=(3, 1),
     )

 

Main information 
[ALGORITHM] SOFM 
[OPTION] verbose = True 
[OPTION] epoch_end_signal = None 
[OPTION] show_epoch = 100 
[OPTION] shuffle_data = True 
[OPTION] step = 0.5 
[OPTION] train_end_signal = None 
[OPTION] n_inputs = 2 
[OPTION] distance = euclid 
[OPTION] features_grid = [3, 1] 
[OPTION] grid_type = rect 
[OPTION] learning_radius = 0 
[OPTION] n_outputs = 3 
[OPTION] reduce_radius_after = 100 
[OPTION] reduce_std_after = 100 
[OPTION] reduce_step_after = 100 
[OPTION] std = 1 
[OPTION] weight = Normal(mean=0, std=0.01) 

The training process 

  sofmnet.train(input_data,epochs=100)

 The coordinates of the codebook vectors, lists of the x and y coordinates 

  sofmnet.weight[0:2, :]

 
{{-0.0126041,-0.705751,0.9806},{0.9806,-0.689149,-0.0227187}}⇐  

Figure 5.43 shows the codebook vectors 
Show[{p1,ListPlot[Transpose[%],PlotStyle Blue]}]⇒ →  

⇐   
Fig. 5.43 The resulted centers (blue) 

5.4  Unsupervised Network  
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The membership functions of the data elements, 

  
list1=[]
for data in input_data:
list1.append(sofmnet.predict(np.reshape(data, (2, 1)).T))

 

  list1

 
{{{1,0,0}},{{1,0,0}},{{0,0,1}},{{0,0,1}},{{0,1,0}},{{0,1,0}}}⇐  

This means for example, that the first element (see input array -[0.1961, 
0.9806]) belongs to the first set (1,0,0). 

5.4.2  Iris Data Set 

Let us employ unsupervised network for clustering Iris Data Set. We consider two 
features: the petal width and petal length. 

Loading procedures 

  

import numpy as np
from sklearn import datasets

from neupy import algorithms, environment
environment.reproducible()

 

The data set 

  iris = datasets.load_iris()

 Considering two the features 

  X=iris.data[:,[2,3]]y=iris.target  

Saving the data for Mathematica, 

  np.savetxt('M:\\dataX.txt',X,fmt='%.2e')

 The labels of the data elements 
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,

⇐

1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2}

 

yM=%;⇒  
Visualizing data (Fig. 5.44) 
Xtrain=Import["M:\\dataX.txt","Table"];⇒  
datat=MapThread[Join[#1,{#2}]&,{Xtrain,yM}];⇒  
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data0=Map[{#[[1]],#[[2]]}&,Select[datat,#[[3]]==0&]];⇒  
data1=Map[{#[[1]],#[[2]]}&,Select[datat,#[[3]]==1&]];

data2=Map[{#[[1]],#[[2]]}&,Select[datat,#[[3]]==2&]];

⇒
 

p0=ListPlot[{data0,data1,data2},PlotStyle {Green,Red,Blue},

Frame True,Axes None,PlotMarkers {Automatic},

AspectRatio 0.9,FrameLabel {"petallength","petal width"},

Frame True]

⇒ →
→ → →

→ →
→

 

⇐   
Fig. 5.44 The dataset to be clustered 

Python 
Parametrizing 

  

sofmnet = algorithms.SOFM(
  n_inputs=2,

    n_outputs=3,
    step=0.4,
    show_epoch=100,
    shuffle_data=True,
    verbose=True,
    features_grid=(3, 1),
    )

 

Main information 
[ALGORITHM] SOFM 
[OPTION] verbose = True 
[OPTION] epoch_end_signal = None 
[OPTION] show_epoch = 100 
[OPTION] shuffle_data = True 
[OPTION] step = 0.4 
[OPTION] train_end_signal = None 

5.4  Unsupervised Network  
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[OPTION] n_inputs = 2 
[OPTION] distance = euclid 
[OPTION] features_grid = [3, 1] 
[OPTION] grid_type = rect 
[OPTION] learning_radius = 0 
[OPTION] n_outputs = 3 
[OPTION] reduce_radius_after = 100 
[OPTION] reduce_std_after = 100 
[OPTION] reduce_step_after = 100 
[OPTION] std = 1 
[OPTION] weight = Normal(mean=0, std=0.01) 

Training the network 

  sofmnet.train(X,epochs=1500)

 Start training 
[TRAINING DATA] shapes: (150, 2) 
[TRAINING] Total epochs: 1500 
--------------------------------------------------------- 
|    Epoch    |  Train err  |  Valid err  |    Time     | 
--------------------------------------------------------- 
|           1 |     0.46922 |           - |       47 ms | 
|         100 |     0.24516 |           - |       47 ms | 
|         200 |     0.24426 |           - |       47 ms | 
|         300 |     0.23746 |           - |       47 ms | 
|         400 |     0.24027 |           - |       47 ms | 
|         500 |     0.23996 |           - |       47 ms | 
|         600 |     0.23709 |           - |       47 ms | 
|         700 |     0.23738 |           - |       47 ms | 
|         800 |     0.23862 |           - |       47 ms | 
|         900 |     0.23704 |           - |       47 ms | 
|        1000 |     0.23334 |           - |       47 ms | 
|        1100 |     0.23588 |           - |       47 ms | 
|        1200 |     0.23366 |           - |       47 ms | 
|        1300 |     0.23544 |           - |       47 ms | 
|        1400 |     0.23598 |           - |       47 ms | 
|        1500 |     0.23438 |           - |       47 ms | 
--------------------------------------------------------- 

The coordinates of the codebook vectors (x1,x2,x3) and (y1,y2,y3) 

  sofmnet.weight[0:2, :]

 {{1.45812,4.26827,5.61301},{0.242962,1.34391,2.03483}}⇐  
c=Transpose[%];⇒  

Resulted labels of the elements after training process 

  
list1=[]
for data in X:
list1.append(sofmnet.predict(np.reshape(data, (2, 1)).T))

 

  list1

 



  341 

{{{1,0,0}},{{1,0,0}},{{1,0,0}},{{1,0,0}},{{1,0,0}},{{1,0,0}},

{{1,0,0}},{{1,0,0}},{{1,0,0}},{{1,0,0}},{{1,0,0}},{{1,0,0}},

{{1,0,0}},{{1,0,0}},{{1,0,0}},{{1,0,0}},{{1,0,0}},{{1,0,0}},

{{0,0,1}},{{0,0,1

⇐

}},{{0,0,1}},{{0,0,1}},{{0,0,1}},

{{0,0,1}},{{0,0,1}},{{0,0,1}},{{0,0,1}},{{0,0,1}}}

 

yy=Map[Flatten[#]&,%];⇒  
{{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},

{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},

{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},{1,0,0},

{0,1,0},{0,0,1},{0,0,1},{0,0,

⇐

1},{0,0,1},{0,0,1},

{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1},{0,0,1}}

 

yyy=Map[#.{0,1,2}&,yy]⇒  
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,2,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,1,

⇐

1,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,2,1,

2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2,1,2,2,2,2,2,2,2,2,2,2,2}

 

Degree of the misclustered 
Norm[yM-yyy]⇒  
6⇐  

%//N⇒  
2.44949⇐  

Visualization of the original and the clustered datasets, see Fig. 5.45/a and 
5.45/b, with the position of the codebook vectors 
datat=MapThread[Join[#1,{#2}]&,{Xtrain,yyy}];⇒  
data0=Map[{#[[1]],#[[2]]}&,Select[datat,#[[3]]==0&]];⇒  
data1=Map[{#[[1]],#[[2]]}&,Select[datat,#[[3]]==1&]];

data2=Map[{#[[1]],#[[2]]}&,Select[datat,#[[3]]==2&]];

⇒
 

p1=ListPlot[{data0,data1,data2},PlotStyle {Green,Red,Blue},

Frame True,Axes None,PlotMarkers {Automatic},

AspectRatio 0.9,FrameLabel {"petallength","petal width"},

Frame True];

⇒ →
→ → →

→ →
→

 

p2=ListPlot[

c,PlotMarkers "\[SpadeSuit]",PlotStyle {Black,Large}];

⇒
→ →  

GraphicsGrid[{{p0,Show[{p1,p2}]}}]⇒  

5.4  Unsupervised Network  




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⇐   
Fig. 5.45 The original (left) and the clustered (right) datasets with the codebook vectors (♠) 

 
 

5.4.3  Voronoi Mesh 

Let us suppose that we would like to partition a set of points, see Fig. 5.46 into 
ten subsets saving the original topology. 

Loading the dataset 
dataQ=Import["M:\\f_01_05.dat"]/1000;⇒  

  

import numpy as np
from sklearn import datasets

from neupy import algorithms, environment
environment.reproducible()

 

  from numpy import array, matrixfrom scipy.io import mmread, mmwrite  

dataQ2=Map[{#[[1]],#[[2]]}&,dataQ];⇒  
p0=ListPlot[dataQ2]⇒  
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⇐   
Fig. 5.46 The dataset to be clustered 

Export["cuki.mtx",dataQ2]⇒  
cuki.mtx⇒  

Python 
Reading the dataset into Python 

  caki=mmread('cuki.mtx')

 Parametrizing the function 

  

sofmnet = algorithms.SOFM(
  n_inputs=2,

    n_outputs=10,
    step=0.4,
    show_epoch=20,
    shuffle_data=True,
    verbose=True,
    features_grid=(5, 2),
    )

 

We have two inputs and ten outputs. 
Main information 
[ALGORITHM] SOFM 
[OPTION] verbose = True 
[OPTION] epoch_end_signal = None 
[OPTION] show_epoch = 20 
[OPTION] shuffle_data = True 
[OPTION] step = 0.4 
[OPTION] train_end_signal = None 
[OPTION] n_inputs = 2 
[OPTION] distance = euclid 
[OPTION] features_grid = [5, 2] 
[OPTION] grid_type = rect 
[OPTION] learning_radius = 0 
[OPTION] n_outputs = 10 
[OPTION] reduce_radius_after = 100 

5.4  Unsupervised Network  
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[OPTION] reduce_std_after = 100 
[OPTION] reduce_step_after = 100 
[OPTION] std = 1 
[OPTION] weight = Normal(mean=0, std=0.01) 

Training process 

  sofmnet.train(caki,epochs=50)

 Start training 
[TRAINING DATA] shapes: (2670, 2) 
[TRAINING] Total epochs: 50 
--------------------------------------------------------- 
|    Epoch    |  Train err  |  Valid err  |    Time     | 
--------------------------------------------------------- 
|           1 |    0.022902 |           - |       1 sec | 
|          20 |    0.022270 |           - |     858  ms | 
|          40 |    0.021920 |           - |     889  ms | 
|          50 |    0.021701 |           - |     858  ms | 
--------------------------------------------------------- 

  
list1=[]
for data in caki:
list1.append(sofmnet.predict(np.reshape(data, (2, 1)).T))

 

Labels of the elements (Fig. 5.47) 

 

yy=Map[Flatten[#]&,%];⇒  
yyy=Map[#.{0,1,2,3,4,5,6,7,8,9}&,yy];⇒  

The coordinates of the codebook vectors, (x1,...,x10) and (y1,...,y10) 

  sofmnet.weight[0:2, :]

 {{-0.124046,-0.0830807,0.00767717,-0.0265025,-0.15188,

-0.0204085,0.0463383,-0.10913,0.0576955,-0.0427581},

{-0.0684907,-0.139941,-0.131987,-0.0525824,0.0128014,

0.100778,0.0636908,0.0709744,-0.0357107,

⇐

0.010534}}
 

cc=Transpose[%];⇒  
p1=ListPlot[{cc},PlotStyle Red];⇒ →  
p2=Show[{p0,p1}]⇒  
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⇐   
Fig. 5.47 The resulted codebook vectors (red) 

Having the coordinates of the codebook vectors, we can identify the points 
belonging to the different clusters, see Fig. 5.48. 
datat=MapThread[Join[#1,{#2}]&,{dataQ2,yyy}];⇒  
index=Range[10]-1;⇒  
fata={};⇒  
Do[AppendTo[fata,Map[

{#[[1]],#[[2]]}&,Select[datat,#[[3]]==index[[i+1]]&]]],{i,0,9}]

⇒
 

p10=ListPlot[fata,Frame True,Axes None];⇒ → →
 P=Show[{p0,p1,p10}]⇒  

⇐   
Fig. 5.48 The ten clusters 

We can get the same subsets via tessellation, namely generating Voronoi mesh, 
see Fig. 5.49. 

The partitioning of a plane with n points into convex polygons such that each 
polygon contains exactly one generating point and every point in a given polygon 
is closer to its generating point than to any other. A Voronoi diagram is sometimes 

5.4  Unsupervised Network  
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also known as a Dirichlet tessellation. The cells are called Dirichlet regions, 
Thiessen polytopes, or Voronoi polygons. 

Mathematica 
ki=VoronoiMesh[cc,MeshCellStyle {{1,All} White,

{0,All} Black},AspectRatio 0.8];

⇒ → →
→ →  

Show[{ki,P}]⇒  

⇐   
Fig. 5.49 The resulting centers (blue) 

5.4.4  Robust Regression 

Unsupervised neural networks can be applied “to eliminate” outliers in order fit a 
function to clouds of points. Let us consider the following cloud of points, see 
Fig. 5.50. 

Clear[sinc]⇒  
sinc[x_]/;x!=0:=Sin[x]/x⇒  
sinc[x_]/;x==0:=1⇒  
SeedRandom[2];data=Table[{x,sinc[x]+2 

Random[NormalDistribution[0,0.1]]},{x,-10,10,0.05}];

⇒
 

pdata=ListPlot[data,AspectRatio 0.8,PlotRange {-0.7,1.6},

Epilog {Green,Map[Point,data]}]

⇒ → →
→  
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⇐   
Fig. 5.50 The set of points 

We would like to approximate these points using non-parametric regression. 
Let us employ clustering with 16 codebooks. 
Export["cuki.mtx",data]⇒  
cuki.mtx⇐  

Python 

  caki=mmread('cuki.mtx')

 

  

sofmnet = algorithms.SOFM(
  n_inputs=2,

    n_outputs=16,
    step=0.4,
    show_epoch=50,
    shuffle_data=True,
    verbose=True,
    features_grid=(8, 2),
     )

 

Main information 
[ALGORITHM] SOFM 
[OPTION] verbose = True 
[OPTION] epoch_end_signal = None 
[OPTION] show_epoch = 50 
[OPTION] shuffle_data = True 
[OPTION] step = 0.4 
[OPTION] train_end_signal = None 
[OPTION] n_inputs = 2 
[OPTION] distance = euclid 
[OPTION] features_grid = [8, 2] 
[OPTION] grid_type = rect 
[OPTION] learning_radius = 0 
[OPTION] n_outputs = 16 

5.4  Unsupervised Network  
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[OPTION] reduce_radius_after = 100 
[OPTION] reduce_std_after = 100 
[OPTION] reduce_step_after = 100 
[OPTION] std = 1 
[OPTION] weight = Normal(mean=0, std=0.01) 

  sofmnet.train(caki,epochs=500)

 Start training 
[TRAINING DATA] shapes: (401, 2) 
[TRAINING] Total epochs: 500 
--------------------------------------------------------- 
|    Epoch    |  Train err  |  Valid err  |    Time     | 
--------------------------------------------------------- 
|           1 |     0.57089 |           - |      156 ms | 
|          50 |     0.25336 |           - |      125 ms | 
|         100 |     0.25626 |           - |      140 ms | 
|         150 |     0.25190 |           - |      140 ms | 
|         200 |     0.24566 |           - |      140 ms | 
|         250 |     0.24918 |           - |      140 ms | 
|         300 |     0.24723 |           - |      125 ms | 
|         350 |     0.24588 |           - |      125 ms | 
|         400 |     0.24669 |           - |      125 ms | 
|         450 |     0.24495 |           - |      156 ms | 
|         500 |     0.24450 |           - |      156 ms | 
--------------------------------------------------------- 

The coordinates of the codebook vectors are, see Fig. 5.51. 

  sofmnet.weight[0:2, :]

 {{7.02132,2.09913,0.730749,3.40938,4.61752,8.1838,-8.37554,

-1.97268,9.39964,-0.662101,-9.4911,-4.68233,-7.17876,-3.25931,

5.82016,-5.90641},{0.133833,0.434031,0.803546,-0.0647337,

-0.192478,0.0401029,0

⇐

.200271,0.504017,-0.0313606,0.904776,

-0.032679,-0.261859,0.0245919,0.0110725,-0.0613287,-0.0200913}}

 

cc=Transpose[%];⇒  
p1=ListPlot[{cc},PlotStyle Red];⇒ →  
Show[{PP,p1}]⇒  
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⇐   
Fig. 5.51 The original function with the codebook vectors (red) 

5.4.5  Kohonen Map 

In order to improve the efficiency of the clustering, we will modify not only the 
winner codebook vector, but also the other codebook vectors, which are in its 
neighborhood, however with different (smaller) weights. To do that, one should 
define the neighborhood topology of the actual winner codebook vector. This 
topology of the neighborhood in 2D is called as Kohonen Map, (sometimes Self 
Organizing Map SOM), see Fig. 5.52. This figure illustrates a topology of 2×3 = 6 
codebook vectors. 

 
Fig. 5.52 Topology of 2×3 = 6 codebook vectors 

The modification of the codebook vectors belonging to the neighborhood 
topology is weighted as shown in Fig. 5.53. Weights of the neighboring codebook 
vectors are represented by a matrix 

5.4  Unsupervised Network  
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6 4 2 3 4
= 4 2

5 3
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 
 
 
 

, 0 1 2
1 2 3

L JΩ  

The matrix elements represent the distance from the winner codebook vector. 
The weights of the codebook vectors can be computed as 

( ) ( ) ( ),
, , ,e ξ Ωη −= + −I Jnnew old old

i j i j k i jw w n x w  

where ( ) ,e ξ Ω− I Jn  is a neighborhood function. As an example, let us consider the 
following set of points, see Fig. 5.53. 
angles=Table[Pi/200. i,{i,0,99}];⇒  
x=Map[{Cos[#],Sin[#]}RandomReal[{0.9,1.1}]&,angles];⇒  
p1=ListPlot[x,PlotRange {{0,1},{0,1}},

PlotStyle {PointSize[0.01],RGBColor[0,0,0]},AspectRatio 1]

⇒ →
→ →  

⇐   
Fig. 5.53 Noisy points of a quadratic circle 

We would like to represent the topology of these points with ten codebook 
vectors. 

Mathematica 
First let us employ standard competing learning technique (without SOM) with 
six codebook vectors. Initializing and training the network 
unsup=InitializeUnsupervisedNet[x,6];⇒  
{unsup,fitrecord}=UnsupervisedNetFit[x,unsup,100,

ReportFrequency 1];//Quiet

⇒
→  
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Figure 5.54 shows the result, 
p3=ListPlot[unsup[[1]],PlotRange {{0,1},{0,1}},

PlotStyle {PointSize[0.02],RGBColor[1,0,0]}];

⇒ →
→  

Show[{p3,p1},AspectRatio 1,PlotRange All]⇒ → →  

⇐   
Fig. 5.54 The codebook vectors (red) without SOM 

Now let us employ competing learning (SOM) with the following symmetric 
neighborhood definition 

3
2
1
0
1
2
3

 
 
 
 
 
 
 
 
 
 
 

 

where the elements of the vector represents the relative distance from the winner 
codebook vector 
unsup=InitializeUnsupervisedNet[x,6,SOM {6,1}];⇒ →  
{som,fitrecord}=UnsupervisedNetFit[x,6,100,SOM {6,1}]⇒ →  

Figure 5.55 shows the result 
p6=NetPlot[som,x];⇒  
p7=ListPlot[som[[1]],PlotRange {{0,1},{0,1}},

PlotStyle {PointSize[0.02],RGBColor[1,0,0]}];

⇒ →
→  

5.4  Unsupervised Network  



352  5   Neural Networks 

Show[{p6,p7},AspectRatio 1]⇒ →  

⇐   
Fig. 5.55 The codebook vectors with SOM technique 

5.4.6  Fitting Sphere to Point Cloud Data 

Let us consider a cloud of data resulting from a low resolution sensor causing 
discontinuity effects. In our case the original object is a sphere having radius 
R = 0.152 m that was placed in the real world position x = 0, y = 0 with an object 
distance of z = 3 m. The measured data 
dataQ=Import["G:\\f_01_05.dat"]/1000;⇒  

The number of the data points is, 
n=Length[dataQ]⇒  
2670⇐  

Figure 5.56 shows the measured points together with the sphere to be estimated 
p1=ListPointPlot3D[dataQ,

PlotStyle Directive[Blue,PointSize[0.006]],Axes False,

Boxed False,PlotRange {{-0.2,0.2},{-0.2,0.2},{2.8,3.2}},

BoxRatios {1,1,1}];

⇐
→ →

→ →
→

 

a0=a;b0=b;c0=c;d0=d;R0=R;⇒  
p2=Graphics3D[{Specularity[White,30],Orange,Opacity[0.1],

Sphere[{a,b,c},R ]/.{a a0,b b0,c c0,R R0}},

PlotRange {{-0.2,0.2},{-0.2,0.2},{2.8,3.2}},

Axes False,BoxRatios {1,1,1}];

⇒
→ → → →

→
→ →

 

Show[{p1,p2}]⇒  
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⇐   
Fig. 5.56 The measured data with the object to be estimated 

Mathematica 
We try to represent the measured points with 25 codebook vectors positioned in 
5×5 symmetric SOM 
{som,fitrecord}=

UnsupervisedNetFit[dataQ,25,100,SOM {5,5}];//Quiet

⇒
→  

Let us display the code-book vectors with the sphere to be estimated, see Fig. 
5.57. 
p3=ListPointPlot3D[dataSOM,

PlotStyle Directive[Red],BoxRatios {1,1,1}];

⇒
→ →  

Show[{p2,p3}]⇒  

⇐   

5.4  Unsupervised Network  

Fig. 5.57 The codebook vectors with the exact target object 



354  5   Neural Networks 

Now we can use these codebook vectors representing the cloud of the 
measured data points, to estimate the unknown parameters (a, b, c, R) instead of 
the measured raw data. 

This example demonstrates that unsupervised network can also be considered 
as a dimension reduction method. 

5.5  Recurrent Network 

Basic Theory 

The networks we have discussed until now could learn input - output pairs 
independently on the order they were introduced in the training. However 
sometimes we need to predict series. For example let us suppose that we have two 
sequences. An input sequence 

{1, 2, 3, 2, 1, 3}=x

 and an output sequence 

y = {2, 3, 1, 1, 3, 2};

 It goes without saying that a standard network is unable to learn this relation, 
since a normal network has no memory, and for such a network this task contains 
contradictions. For example, to learn y1, (1→2) contradicts with learning 
y5,(3→2). To solve the problem, we need a network that is able to remember the 
previous output. Hence the network needs memory. This is not a static one, like 
in case of the Hopfield -network's associative memory. The Hopfield network 
already discussed in the previous section is a special type of the recurrent network 
where all connections are symmetric and it cannot handle sequences (Freeman 
1994). 

The most simple recurrent network is the Jordan network, see Fig. 5.58. 
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Fig. 5.58 Jordan’s network 

It means that the output of the network depends not only on the input, but also 
on the previous output, too. Since 

) = ( ( ) + (  -1) + )σ h x h hh(t w x t w y t b

 ( ) = ( ( ) + )σ y y yy t w h t b

 where an activation function, for example 

( ) ( ) 1
1

σ • −=
+ uu

e

 therefore 

( ) ( ( ( ) ( 1) ) ) ( ( ), ( 1))y y h x h h yy t w w x t w y t b b g x t y tσ σ= + − + + = −

 The output is a nonlinear function (g(•)) representing the network structure 
and its parameters, with the actual input x(t) as well as of the previous output. 
This network can be generalized, see Fig. 5.59 

5.5  Recurrent Network  
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Fig. 5.59 Generalized recurrent network without biases 

Nowadays, there are more sophisticated models for recurrent procedure, 
Long-Short-Term- Memory (LSTM) and Gated Recurrent Uni (GRU). Let us 
consider the Elman network (Fig. 5.60), which slightly differ from the Jordan’s 
network concerning its feedback, namely 

 
Fig. 5.60 Elman’s network 

In this context, we can consider x(t) as input, h(t) as the state and y(t) as the 
output. The new state in case of the standard Recurrent Neural Network (RNN) 
can be computed as 

( ) = ( ( ) + (  -1) + )σ h x h hh t w x t w h t b

 The main difference between RNN and LSTM and GRU is, how to compute 
h(t). The latter two techniques compute the new state in a more complicated way 
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than RNN. These techniques improve very considerable the training process of 
the network. 

5.5.1  Sequence to Sequence 

Mathematica 
Let us solve the sequence input - sequence output problem introduced above using 
RNN technique, see Fig. 5.61. The input and output sequences 
x={{1},{2},{3},{2},{1},{3}}; y={{2},{3},{1},{1},{3},{2}};⇒  

We consider the following model 

( ) = ( ( 1), x( ), x( 1)) −  − y t g y t t t

 This means that na= 1, nb= 2 and nk = 0. Our multi-layer network has one hidden 
layer with 2 nodes containing sigmoid activation function.  

Here we employ Mathematica 10 with Neural Networks Application, 

<<NeuralNetworks`⇒  
Clear[model1,fitrecord];⇒  

Training process can be seen on Fig. 5.61. 
{model1,fitrecord}=

NeuralARXFit[x,y,{1,2,0},FeedForwardNet,{2},1000];//Quiet

⇒
 

⇐   
Fig. 5.61 The network error vs. iteration steps 

The network information 

NetInformation[model1]⇒  

5.5  Recurrent Network  
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NeuralARX model with 1 input signal and 1 output signal. 

The regressor is defined by: na = 1, nb = 2, nk = 0. The 

mapping from regressor to output is defined by a FeedForward

network created 2018-10-2

⇐

5 at 12:19. The network has 3 inputs

and 1 output. It consists of 1 hidden layer with 2 neurons 

with activation function of Sigmoid type. 

 

Let us employ our network, 
NetOut=NetPredict[x,y,model1]⇒  
{{3.04076},{3.},{1.},{1.},{3.},{2.}}⇐  

The first element of the output sequence is wrong, since its computation is 
based on the unknown u(0) and y(0) values. 

Now let us solve the problem with LSTM model (Rohrer 2017). Further 
models are in Mathematica 11. The input and out sequences are 
X=Partition[Flatten[x],1]⇒  
{{1},{2},{3},{2},{1},{3}}⇐  
Y=Flatten[y]⇒  
{2,3,1,1,3,2}⇐  

Then the training set 

train={X Y}⇒ →  
{{{1},{2},{3},{2},{1},{3}} {2,3,1,1,3,2}}⇐ →  

We employ a single LSTM layer with linear output, 
netLSTM=NetInitialize@NetChain[{LongShortTermMemoryLayer[1],

LinearLayer[6]},"Input" {6,1},"Output" 6]

⇒
→ →  

NetChain⇐

 

The graph of the network 
NetGraph[netLSTM]⇒  
NetGraph⇐

 

Training the network 
pLSTM=NetTrain[netLSTM,train]//Quiet⇒  

NetChain⇐
 

Testing the network 
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pLSTM[X]⇒  
{2.,3.,1.,0.999999,3.,2.}⇐  

LSTM model is more efficient than standard RNN! 

5.5.2  Time Series Prediction 

The problem looks at an Airline Passengers’ prediction problem. Given a year and 
a month, the task is to predict the number of international airline passengers in 
units of 1, 000. The data ranges from January 1949 to December 1960, or 12 years, 
with 144 observations. The dataset is freely available for free from the 
DataMarket webpage as a CSV download with the filename "international - 
airline - passengers.csv ". 

The example is from: https://machinelearningmastery.com/time-series-
prediction-lstm-recurrent-neural-networks-python-keras/ (Brownlee 2016). 

Python 
Loading the data and visualize it, see Fig. 5.62. 

  

import pandas
import matplotlib.pyplot as plt
dataset = pandas.read_csv('M:\\
international-airline-passengers.csv', usecols=[1], 
engine='python', skipfooter=3)

plt.plot(dataset)
plt.show()

 

 
Fig. 5.62 The changes of the number of passengers in unit of 103 in time 

We can rephrase the problem as a regression one, i.e., given the number of 
passengers (in units of thousands) this month, what will be the number of 
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passengers next month? We can write a simple function to convert our single 
column of data into a two-column dataset: the first column containing this 
month's(t) passenger count and the second column containing next month's(t+1) 
passenger count, to be predicted. Before we get started, let’s first import all of the 
functions and classes we intend to use. This assumes a working SciPy 
environment with the Keras deep learning library installed (Chollet 2017). 

 

# LSTM for international airline passengers problem with
  regression framing
import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error

 

# convert an array of values into a dataset matrix
def create_dataset(dataset, look_back=1):

dataX, dataY = [], []
for i in range(len(dataset)-look_back-1):

a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])

return numpy.array(dataX), numpy.array(dataY)

 

# fix random seed for reproducibility
numpy.random.seed(7)

# load the dataset
dataframe =

read_csv('M:\\international-airline-passengers.csv',
usecols=[1], engine='python', skipfooter=3)

dataset = dataframe.values
dataset = dataset.astype('float32')

 

# normalize the dataset
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)

# split into train and test sets
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], 

dataset[train_size:len(dataset),:]
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# reshape into X=t and Y=t+1
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
# reshape input to be [samples, time steps, features]
trainX = numpy.reshape(trainX, (trainX.shape[0], 1,

trainX.shape[1]))
testX = numpy.reshape(testX, (testX.shape[0], 1,

testX.shape[1]))

 

# create and fit the LSTM network
model = Sequential()
model.add(LSTM(4, input_shape=(1, look_back)))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=100, batch_size=1, verbose=0)

 

# make predictions
trainPredict = model.predict(trainX)
testPredict = model.predict(testX)

 
# invert predictions
trainPredict = scaler.inverse_transform(trainPredict)
trainY = scaler.inverse_transform([trainY])
testPredict = scaler.inverse_transform(testPredict)
testY = scaler.inverse_transform([testY])  
# calculate root mean squared error
trainScore = math.sqrt(mean_squared_error(trainY[0],

trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], 

testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))  

# shift train predictions for plotting
trainPredictPlot = numpy.empty_like(dataset)
trainPredictPlot[:, :] = numpy.nan
trainPredictPlot[look_back:len(trainPredict)+look_back, :] =

trainPredict  
# shift test predictions for plotting
testPredictPlot = numpy.empty_like(dataset)
testPredictPlot[:, :] = numpy.nan
testPredictPlot[len(trainPredict)+(look_back*2)+

1:len(dataset)-1, :] = testPredict  
# plot baseline and predictions
plt.plot(scaler.inverse_transform(dataset))
plt.plot(trainPredictPlot)
plt.plot(testPredictPlot)
plt.show()

 

Train Score: 22.92 RMSE⇐  
Test Score: 47.53 RMSE⇐  

5.5  Recurrent Network  
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Fig. 5.63 The results of the training of the network (blue) 

Figure 5.63 shows the fitting on the training set (blue on orange) as well as the 
prediction on the test set (blue on green). For Mathematica the input training and 
test data are associated with Mathematica variables 

 trainY

 
{{118.,132.,129.,121.,135.,148.,148.,136.,119.,104.,118.,115.,

126.,141.,135.,125.,149.,170.,170.,158.,133.,114.,140.,145.,

150.,178.,163.,172.,178.,199.,199.,184.,162.,146.,166.,171.,

180.,193.,181.,18

⇐

3.,218.,230.,242.,209.,191.,172.,194.,196.,

196.,236.,235.,229.,243.,264.,272.,237.,211.,180.,201.,204.,

188.,235.,227.,234.,264.,302.,293.,259.,229.,203.,229.,242.,

233.,267.,269.,270.,315.,364.,347.,312.,274.,237.,278.,284.,

277.,317.,313.,318.,374.,413.,405.,355.,306.,271.}}

trainY=Flatten[%];⇒

 testY

 
{{301.,356.,348.,355.,422.,465.,467.,404.,347.,305.,336.,340.,

318.,362.,348.,363.,435.,491.,505.,404.,359.,310.,337.,360.,

342.,406.,396.,420.,472.,548.,559.,463.,407.,362.,405.,417.,

391.,419.,461.,47

⇐

2.,535.,622.,606.,508.,461.,390.}}

testY=Flatten[%];⇒

Mathematica 
Let us employ built-in function. The lengths of the datasets are 
ntrain=Length[trainY]⇒

94⇐

ntest=testY//Length⇒
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46⇐
 

We shift and rescale the elements of the datasets to have zero mean and unit 
sample variance, 
traintestY=Join[trainY,testY];⇒  
traintestYS=Standardize[traintestY];⇒

 trainYS=Take[traintestYS,{1,94}];⇒  
testYS=Take[traintestYS,{95,140}];⇒

 
Our RNN model is 

( +1) = ( ( ), (  − 1))y t g y t y t

 Now creating the training set 
yout=Take[trainYS,{3,94}];

yin1= Take[trainYS,{2,93}];

yin2= Take[trainYS,{1,92}];

⇒

 

dataTrain=MapThread[{#2,#3} #1&,{yout,yin2,yin1}];⇒ →
 

Employing built in Predict function for training (Fig. 5.64) 
p=Predict[dataTrain,Method "NeuralNetwork",

PerformanceGoal "Quality",TimeGoal 30]

⇒ →
→ →  

PredictorFunction[⇐
 

PredictorInformation[p]⇒  

5.5  Recurrent Network  
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⇐

 
pm=PredictorMeasurements[p,dataTrain]⇒  
PredictorMeasurementsObject⇐

 
pm["ComparisonPlot"]⇒  
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⇐   
Fig. 5.64 The results of the training 

In order to visualize the result we need to rescale the data. The trained data 
trainedY=MapThread[p[{#1,#2}]&,{yin2,yin1}];⇒  

The mean value and the variance 

me=Mean[traintestY];vari=Variance[traintestY];⇒  
Then the rescaled predicted values of the training set are 
cumi=trainedY*Sqrt[vari]+me;⇒  

The original values 

trainY;⇒  
Therefore the RMSE of the training values 

2

Sqrt[Total[MapThread[

( 1- 2) ,Drop[trainY,1,2],cumi]]/Length[cu# # & mi]]

⇒
 

23.4732⇐  
Which is quite close to the values of Python (22.92), see above. 

Let us plot the output and the predicted values of the training set for 
visualization 
p11=ListPlot[{yout,trainedY},Joined True];⇒ →  

Now, we check the test dataset. Computing the predicted values 
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youtT=Take[testYS,{3,46}];

yin1T= Take[testYS,{2,45}];

yin2T= Take[testYS,{1,44}];

⇒

 

dataTest=MapThread[{#2,#3} #1&,{youtT,yin2T,yin1T}];⇒ →  
testedY=MapThread[p[{#1,#2}]&,{yin2T,yin1T}];⇒  
Xtest=Range[93,136];⇒  
XYtest=Transpose[{Xtest,youtT}];⇒

 XYtrainPredict=Transpose[{Xtest,testedY}];⇒  
Visualizing the values of the test values and their predicted values 
p22=ListPlot[

{XYtest,XYtrainPredict},Joined True,PlotStyle {Blue,Red}];

⇒
→ →  

Figure 5.65 shows the result, 
Show[{p11,p22},PlotRange All,Frame True,Axes None]⇒ → → →  

⇐   
Fig. 5.65 The results of the training and test set prediction 

5.5.3  A Simple Optical Character Recognition 

The optical character recognition problem takes an image containing a sequence 
of characters and returns the list of characters. One simple approach is to 
preprocess the image to produce images containing only a single character and do 
classification. This is a fragile approach and completely fails for domains such as 
cursive handwriting, where the characters run together. 

Mathematica 
First, generate training and test data, which consists of images of words and the 
corresponding word string: 
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imgMap = ⇒

 

 

For example, the second element 
imgMa  p[[2]]⇒  

⇐  
which is an image (Fig. 5.66), 

Head[%]⇒  
Image⇐  

which has a size of 15×9 
ImageData[imgMap[[2]]]//Dimensions⇒  
{15,9}⇐  

The pixel values are 
ImageData[imgMap[[2]]]//MatrixForm⇒  
1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000

1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000

1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000

1.000, 1.000, 1.

⇐

000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000

1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000

1.000, 0.890, 0.498, 0.000, 0.000, 0.420, 0.929, 1.000, 1.000

1.000, 0.443, 0.274, 0.808, 0.765, 0.094, 0.463, 1.000, 1.000

1.000, 1.000, 1.000, 0.957, 0.863, 0.420, 0.216, 0.984, 1.000

1.000, 0.839, 0.120, 0.000, 0.298, 0.074, 0.216, 0.984, 1.000

0.972, 0.120, 0.498, 0.992, 1.000, 0.659, 0.172, 0.984, 1.000

0.964, 0.120, 0.533, 0.984, 0.812, 0.094, 0.216, 0.984, 1.000

1.000, 0.678, 0.000, 0.000, 0.047, 0.572, 0.216, 0.984, 1.000

1.000, 1.000, 0.976, 0.933, 0.996, 1.000, 1.000, 1.000, 1.000

1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000

1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

MatrixPlot[%]⇒  
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⇐   
Fig. 5.66 The character as image 

Now we generate words randomly with maximum length of seven characters 
from English vocabulary of more than 40 thousand words, 
Length[WordList[]]⇒  
40127⇐  
maxLen=7;

wordList=ToLowerCase[Select[WordList[],

StringLength[#]<=maxLen&&LetterQ[#]&]];

SeedRandom[1234];

wordList=RandomSample[StringPadRight[wordList,maxLen]];

dataset=Dataset@Map[<|"Input" ImageAssem

⇒

→ ble[Lookup[imgMap,

Characters[#]]],"Output" StringTrim[#]|>&,wordList];→

 

The number of the elements of the generated input - output data set, 
Length[dataset]⇒  
16022⇐  

which looks like 

Short[dataset]⇒  
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⇐

 
The input is image and the output is a string. The input image size is 

15×(7×9) = 15×63, (see Fig. 5.67) 
ImageData[dataset[[1]][[1]]]//MatrixPlot⇒  

⇐   
Fig. 5.67 The input string as image 

dataset[[1]][[2]]//Head⇒  
String⇐  

5.5  Recurrent Network  
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We define a net that takes an image and then let us treat the width dimension 
as a sequence dimension.  For the network an input image will be encoded using 
enc=NetEncoder[{"Image",{63,15},"Grayscale"}]⇒  

NetEncoder⇐

 
This will encode the input image into a tensor of size 

enc[dataset[[1]][[1]]]//Dimensions⇒  
{1,15,63}⇐  

Define a net that takes an image and then treats the width dimension as a 
sequence dimension. A sequence of probability vectors over the width dimension 
is produced. The probability vector with length of the set of characters including 
blank will provide a sequence of characters. For example, let us define the 
following decoder 
dec=NetDecoder[{"CTCBeamSearch",{"a","b","c"}}]⇒  

NetDecoder⇐

 
Use the decoder on a sequence of probability vectors: 
dec[{{0.2,0.4,0.3,0.1},{0.5,0.3,0.1,0.1}}]⇒  
{b,a}⇐  

The result is the most probable character sequence. The sequences with lower 
probability can be obtained - first four. The lower the value, the higher is the 
probability. 
dec[{{0.2,0.4,0.3,0.1},{0.5,0.3,0.1,0.1}},

{"TopNegativeLogLikelihoods",4}]

⇒
 

{{b,a} 1.60944,{b} 1.66073,{a} 1.77196,{c,a} 1.89712}⇐ → → → →  

In our case all characters are considered, 
chars=CharacterRange["a","z"]⇒  
{a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}⇐  
Length[chars]⇒  
26⇐  

and the decoder is 
decoder=NetDecoder[{"CTCBeamSearch",chars,"BeamSize" 50}]⇒ →  

NetDecoder⇐
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Now we can define our network containing GatedRecurrentLayers indicating 
recurrent type of network, 
ocrNet=NetChain[{ConvolutionLayer[20,3],BatchNormalizationLayer[],

Ramp,PoolingLayer[2],ConvolutionLayer[15,3],

BatchNormalizationLayer[],Ramp,PoolingLayer[2],FlattenLayer[1],

TransposeLayer[],GatedRecu

⇒

rrentLayer[19],GatedRecurrentLayer[19],

NetMapOperator[LinearLayer[Length[chars]+1]],SoftmaxLayer[]},

"Input" NetEncoder[{"Image",{63,15},"Grayscale"}],

"Output" decoder]

→
→

 

NetChain⇐

 
In order to evaluate how the input of the network can fit to the required output, 

we define a loss function. 
loss=CTCLossLayer["Target" NetEncoder[{"Characters",chars}]]⇒ →  
CTCLossLayer⇐

 
Split the dataset into a test set and a training set. 
{testData,trainData}=

TakeDrop[dataset,Ceiling[Length[dataset]/10]];

⇒
 

Length[trainData]⇒  
14419⇐  
Length[testData]⇒  
1603⇐  
trainNet=NetTrain[ocrNet,trainData,LossFunction loss,

MaxTrainingRounds 20,ValidationSet testData]

⇒ →
→ →  

Evaluate the trained net on images from the test set (see above), the inputs 
testIms=Normal@testData[1;;10,"Input"]⇒  

⇐

 
trainNet[testIms]⇒  

5.5  Recurrent Network  
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{{t,o,l},{g,i,n,g,e,r,y},{i,t,s},{b,e,a,c,o,n},

{g,h,e},{s,o,u,r,c,e},{f,a,t,h,e,a,d},

{b,o,l,i,x},{b,e,l,a,t,e,d},{e,d,g,e}}

⇐
 

Obtain the top 5 decodings for an image, along with the negative log - 
likelihood of each decoding 

trainNet[⇒ , 
{"TopNegativeLogLikelihoods", 5}] 

{{s,o,m,b,e,r} 0.00501868,{s,o,m,u,b,e,r} 8.53219,

{u,o,m,b,e,r} 8.6011,{s,o,m,b,h,e,r} 8.76271,

{w,o,m,b,e,r} 8.92553}

⇐ → →
→ →
→

 

or 

dataset[[18]][[1]]⇒  
⇐  

trainNet[dataset[[18]][[1]], {"TopNegativeLogLikelihoods", 5}]⇒  
{{a,l,g,e,b,r,a} 0.00695273,{l,g,e,b,r,a} 7.21149,

{t,l,g,e,b,r,a} 8.16581,{a,l,c,e,b,r,a} 8.59214,

{l,g,e,b,r,a} 7.21149}

⇐ → →
→ →

→

 

We may extend this example for licence plate recognition! 

5.6  Deep Neural Network 

Basic Theory 

The deep neural networks (DNN) with more hidden layers yielded poorer 
performance since they represent over fitting and weak learning performances 
more likely than the traditional shallow networks. Here we discuss some new 
techniques to improve the performance of the DNN (Banerjee 2018). 

5.6.1  Dropout 

The most representative solution is the dropout, which trains only some of the 
randomly selected nodes rather than the entire network. It is very effective, while 
its implementation is not very complex. Figure 5.68 below explains the concept 
of the dropout. Some nodes are randomly selected at a certain percentage and their 
outputs are set to zero in order to deactivate the nodes. 
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Fig. 5.68 Dropout is where some nodes are randomly selected and their outputs are set to zero 

to deactivate the nodes 

The technical realization in Mathematica, 
drop=DropoutLayer[0.65,"Input" NetEncoder["Image"],

"Output" NetDecoder["Image"]]

⇒ →
→  

DropoutLayer⇐

 
The layer acts on the image 3-tensor by randomly and independently zeroing 

the individual color components of each pixel (Fig. 5.69): 

drop[⇒ ,NetEvaluationMode→”Train”] 

5.6  Deep Neural Network  
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Fig. 5.69 Effect of Dropout in general 

5.6.2  ReLU 

The gradient in this context can be thought as be a similar in concept to the delta 
of the back-propagation algorithm. The vanishing gradient in the training process 
with the back-propagation algorithm occurs when the output error is more likely 
to fail to reach the further nodes. The back-propagation algorithm trains the neural 
network as it propagates the output error backward to the hidden layers. However, 
as the error hardly reaches the first hidden layer, the weight cannot be adjusted. 
Therefore, the hidden layers that are close to the input layer are not properly 
trained. There is no point of adding hidden layers if they cannot be trained, see 
Fig. 5.70. 

 
Fig. 5.70 The vanishing gradient 

The representative solution to the vanishing gradient is the use of the Rectified 
Linear Unit (ReLU) function as the activation function. It is known to better 
transmit the error than the sigmoid function. The ReLU function is defined as 
f(x) = max(x, 0). In Mathematica there is a built-in function, see Fig. 5.71, 
Plot[Ramp[x], {x,-2,2}]⇒  
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⇐   
Fig. 5.71 The ReLU function Ramp(x) 

ReLU(x) relates to the UnitStep(x) function, namely 
Simplify[Ramp[x]-x UnitStep[x]]⇒  
0⇐  

5.6.3  Softmax Layer 

In case of classification, the probability vector produced by Softmax Layer of the 
network is converted to an actual class, 
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Mathematica 
softmax=SoftmaxLayer["Input" {3}]⇒ →  
SoftmaxLayer⇐

 
softmax[{2,1,0.1}]⇒  
{0.659001,0.242433,0.0985659}⇐  
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5.6.4  Cross Entropy Loss 

Let us consider a new loss function H(y, d) called the cross entropy function. 
Technically we can compute this function in the following way, 

( , ) = Log ( )  (1 ) Log(1 y)− − − −H y d d y d

 Figure 5.72 shows this function, where d is the sample output, while y is 
network output ranging between 0 and 1. That is why this objective loss function 
is teaming with the Softmax layer. 
Plot[{-Log[y],-Log[1-y]},{y,0,1},Frame True,FrameLabel {"y"},

PlotLegends {"d = 1 -Log(y)","d = 0 -Log(1-y)"}]

⇒ → →
→ → →  

⇐   
Fig. 5.72 Cross entropy function H(y, d) in case of d = 1 and d = 0 

If the network has M output nodes, 

( ) ( ) ( )( )
=1

= ln 1 ln 1− − − −∑
M

i i i i
i

H d y d d

 
Mathematica 
loss=CrossEntropyLossLayer["Probabilities"]⇒  
CrossEntropyLossLayer⇐

 
loss[<|"Input"  {0.2,0.7}, "Target" {0.3,0.8}|>]⇒ → →  
0.768171⇐  

loss=MeanSquaredLossLayer["Input" {2}]⇒ →  
MeanSquaredLossLayer⇐
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loss[<|"Input"  {0.2,0.7}, "Target"  {0.3,0.8}|>]⇒ → →  
0.01⇐  

The cross entropy loss function is more sensitive for the error than RMSE and 
mainly can be employed in classification. 

5.6.5  Stochastic Gradient Descent 

The back propagation techniques employ gradient method to modify the weights 
of the network for every training sample, 

( )
1 ξ ∆+

=

 
= − = +  

  i

i i i i

w w

dR w
w w w w

dw

 
where R is an error function. The algorithm sweeps through the training set, but 
not sequentially, randomly picking up the actual sample. We call it stochastic 
learning. Another technique is, when the algorithm sweeps through the training 
set, it performs the above update for each training example. However the samples 
can be randomly shuffled for each pass. It is called stochastic gradient method 
(SGD). In both cases at every single sample the error is computed and the weights 
updated immediately. 

5.6.6  Batch 

One sweep through the whole samples in the training set is called one epoch. In 
the batch method, each weight update is calculated for all errors of the training 
data, and the average of the weight updates used for adjusting the weights. This 
method uses all of the training data and updates only once during one epoch. The 
update of the i-th weight after an epoch is 

( )1
1

1 ∆+
=

= + ∑
N

i i i j
j

w w w
N

 The ADAM method (Adaptive Moment Estimation) is an improved version of 
the SGD method + Momentum technique. In this optimization algorithm, running 
averages of both the gradients and the second moments of the gradients are used. 
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5.6.7  Mini Batch 

The mini batch method is a blend of the SGD and batch methods. It selects a part 
of the training dataset and uses them for training in the batch method. Therefore, 
it calculates the weight updates of the selected data and trains the neural network 
with the averaged weight update. For example, if 20 arbitrary data points are 
selected out of 100 training data points, the batch method is applied to the 20 data 
points. In this case, a total of five weight adjustments are performed to complete 
the training process, an epoch, for all the data points (5 = 100/20). 

The mini batch method, when it selects an appropriate number of data points, 
obtains the benefits from both methods: speed from the SGD and stability from 
the batch. For this reason, it is often utilized in Deep Learning, which manipulates 
a significant amount of data. 

5.6.8  GPU 

1) The computationally intensive part of neural network is made up of multiple 
matrix multiplications, which can be evaluated in parallel, 

 
A CPU core processes data in a serial one task at a time, so one is limited to 

simultaneous processing only up to the limit of the number of cores in general 
max 12 while in case of GPU there can be many thousands. 
2) The CPU is designed for more general task than GPU, which has more simple 

architecture using basically floating-point representation for just a few types 
of algorithm. 

5.6.9  Classifying Double Spirals 

Let us solve the double-spiral classification problem employing deep neural 
network (Hu and Yuan 2016). 
spirals=Import["M:\\spiral.dat"];⇒  
n=Length[spirals]⇒

 194⇐  
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s1={};s2={};⇒
 Do[If[spirals[[i,3]]==0,AppendTo[s1,{spirals[[i,1]],

spirals[[i,2]]}],AppendTo[s2,{spirals[[i,1]],

spirals[[i,2]]}]],{i,1,n}]

⇒

 

Visualization of the double spirals, see Fig.5.73 
S1=ListPlot[s1,PlotStyle {RGBColor[1,0,0],

PointSize[0.02]},AspectRatio 1];

⇒ →
→  

S2=ListPlot[s2,PlotStyle {RGBColor[0,0,1],

PointSize[0.015]},AspectRatio 1];

⇒ →
→  

pspiral=Show[{S1,S2},PlotRange All]⇒ →
 

⇐   
Fig. 5.73 Double spirals 

Mathematica 
The elements of training set are the coordinates as input and the labels (0 or 1) are 
the output values, 
S1=Map[# {0}&,s1];S2=Map[# {1}&,s2];⇒ → →  
trainingdata=Join[S1,S2];⇒

 
The network, 
net=NetChain[{16,Ramp,16,Ramp,16,Ramp,16,

ElementwiseLayer[1+Tanh[#]&],1},"Input" {2},"Output" {1}]

⇒
→ →  

5.6  Deep Neural Network  
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NetChain⇐

 
net=NetChain[{16,Ramp,16,Ramp,16,Ramp,16,

ElementwiseLayer[1+Tanh[#]&],1},"Input" {2},"Output" {1}]

⇒
→ →  

NetGraph[net]⇒  

 
net=NetInitialize[net];⇒  

We train the network with RMSProp method, which is a stochastic gradient 
descent using an adaptive learning rate derived from exponentially smoothed 
average of gradient magnitude, 
trained=NetTrain[net,trainingdata,BatchSize 32, 

MaxTrainingRounds 2000,Method "RMSProp",

TargetDevice "GPU"];

⇒ →
→ →

→
 

trained[s1]⇒  
{{0.00577259},{0.00549066},{0.00632614},{0.00683176},{0.00553894},

{0.0056929},{0.00560635},{0.00548553},{0.0054264},{0.00556308},

{0.00656038},{0.00603347},{0.00658998},{0.00693081},{0.00613347},

{0.0

⇐

M
036745},{0.00316484},{0.00299972},{0.00296793},{0.00299105},

{0.0031051},{0.00339055},{0.00375449},{0.00428277},{0.0051856}}

 

trained[s2]⇒  
{{1.01079},{1.00865},{1.00976},{1.01042},{1.00991},{1.01131},

{1.00825},{1.00825},{1.00989},{1.00782},{1.00986},{1.01162},

{1.0114},{1.01157},{1.0099},{1.00786},{1.01065},{1.00889},

{1.01245},{1.01273}

⇐

M
,{1.01338},{1.01434},{1.01556},{1.01702},

{1.01867},{1.0187},{1.01828},{1.01813},{1.01826},{1.01874}}

 

The boundary points of the two classes, see Fig. 5.74. 
Show[{pspiral,Quiet[ContourPlot[trained[{x,y}]=={0.5},

{x,-1.01,1.01},{y,-1.01,1.01},ContourStyle {Thin,Green}]]}]

⇒
→  
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⇐   
Fig. 5.74 Classified double spirals 

Python 
Export data for Python 

Export["M:\\spiralom.csv",spirals];⇒  
We employ here Keras package (Sharma 2017) 

  
import numpy as np
import pandas as pd
np.random.seed(4375689)

 

  
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import RMSprop

 

Loading the data 

  
train_data = pd.read_csv('M:\\spiralom.csv').values
train_X = train_data[:,0:2]
train_y = train_data[:,2]

 

Our network structure 

  

model = Sequential()
model.add(Dense(16, activation='relu', input_shape=(2,)))
model.add(Dense(16, activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

 

  model.compile(loss='binary_crossentropy',optimizer=RMSprop(),metrics=['accuracy'])  

5.6  Deep Neural Network  
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Training the network 

  history = model.fit(train_X, train_y, batch_size=32,epochs=2000, verbose=0)

   half_whascore = model.evaluate(train_X, train_y, verbose=0)t

   score

 {0.086479,1.}⇐  

  u=model.predict(train_X)
u

 

-6

-6 -6 -6

2.0923×10 ,0.999854,0.000068496,0.993133,0.0000125849,

0.995349,3.65539×10 ,0.996501,3.36894×10 ,0.999897,3.90718×10 ,

0.999797,0.00007199,0.99995,

{

0.000811408,0.999999,0.00268287,1.,

0.995914,3.40

⇐

- -12 -12

-11 -7

173×10 11,0.998619,1.22405×10 ,0.999704,2.72944×10 ,

0.999982,5.83677×10 ,0.999997,4.11347×10 ,0.995909,0.000571957}

 

z=Flatten[Round[%]]⇒  
{0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,

⇒

1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0}

 

zz=Drop[Table[spirals[[i,3]],{i,1,n}],{1,1}]⇒  
{0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,

⇒

1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0}

 

Norm[z-zz]⇒  
0⇒  

Perfect! 
 
 
 
 


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5.7  Convolutional Neural Networks 

Basic Theory 

The convolutional neural network (CNN) is a relative new machine learning 
technique integrating the traditional shallow type neural network and the 
computer vision mapping methods as feature extraction. 

5.7.1  Problems in Computer Vision 

Basic problems in computer vision: identification of images in general as 
classification- supervised and clustering unsupervised as well as object 
identification and localisation on a single image (Figs. 5.75, 5.76 and 5.77 

⇒  { , , , } 
 

Fig. 5.75 Classification of images. What are on the pictures? 

⇒  {{ , , , , } 

{ , , , , }} 
Fig. 5.76 Clustering of images. What pictures are close to each other? 
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Fig. 5.77 Object localization and identification on images. What kind of objects are on the 
picture and where are they? 

How can we solve these problems via neural network? 

5.7.2  Feature Extraction via AutoEncoder 

How can the input images be represented in a network? We have seen the details 
of the dimension reduction methods in the first chapter. As already stated, an 
AutoEncoder neural network is an unsupervised learning algorithm that applies 
backpropagation, setting the target values to be equal to the inputs, see Fig. 5.78. 

 
Fig. 5.78 The principle of the AutoEncoder training 

While the network represents the identity function between the input and output 
layers, , )( )(i ix x→  the hidden layer represents the reduced dimensional feature 
of the input, see Fig. 5.79. 

 
Fig. 5.79 Employing AutoEncoder 

Let us consider the following two clusters of images (Figs. 5.80 and 5.81): 
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persons=Map[ImageResize[ ,{28,2 ,# 8}]&⇒  

{ , , , , , , , , 

, , , , , , , , , 

, , }]; 
Fig. 5.80 Images of persons 

flowers=⇒  

{ , , , , , , , , , 

 , , , , , , , , , 

 , , }] 
Fig. 5.81 Images of flowers 

mixed=Join[persons,flowers];⇒  
We try to characterize the features of the images with a numeric vector of size 

of two dimensions, which means there are two knots in the hidden layer of the 
AutoEncoder network. We employ built-in function 
reduced = DimensionReduce[mixed, 2, Method "AutoEncoder"];⇒ →  

Let us visualize the reduced dataset, see Fig. 5.82. 
ListPlot[MapThread[Labeled[#1, #2] &, {reduced, mixed}],

PlotStyle PointSize[0.001]]

⇒
→  
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⇐   
Fig. 5.82 Clusters of images represented by reduced dimension vectors 

In order to make the separation of the two clusters easier let us employ polar 
coordinate system, 

2 2 2 2

reducedPolar=

Map[ArcTan[ [[1]]/ #[[1]]+#[[2]]]], #[[1]]+#[[2]]] ,redu ;# & ced]

⇒
 

Figure 5.83 shows the transformed clusters of images 
Show[{ListPolarPlot[MapThread[Labeled[

#1, #2] &, {reducedPolar, mixed}],PlotStyle PointSize[0.001],

AspectRatio 0.7],Plot[2.2x-20,{x,0,17},

PlotStyle {Red,Thick}]},PlotRange {-17,17}]

⇒
→

→
→ →
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⇐   
Fig. 5.83 Clusters of images transformed into polar coordinate system 

Now nearly linear separation is possible! However there are some 
misclustered images in both clusters. 

There is another way to characterize the feature of the digital images, too. 

5.7.3  Respective Fields 

On the one hand, the work by Hubel and Wiesel in the 1950s and 1960s showed 
that cat and monkey visual cortexes contain neurons that individually respond to 
small regions of the visual field called receptive fields whose sizes and locations 
vary systematically across the cortex to form a complete map of visual space, see 
Fig. 5.84. 

5.7  Convolutional Neural Networks  
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Fig. 5.84 Illustration of respective fields 

On the other hand, in computer vision, traditionally the feature extraction is 
based on pixel representation. It is difficult, however, for a computer to 
understand the meaning of raw sensory input data, such as this image represented 
as a collection of pixel values. 

 
Fig. 5.85 Image feature representation at different level of the image structure (object types at 

different levels) 

These two facts motivated the application of complex mapping to represent 
features of digital images in deep learning. 



  389 

Convolution neural network resolves this task by breaking the desired 
complicated mapping into a series of nested simple mappings (Fig. 5.85). 

5.7.4  Image Convolution 

There are many operations in image analysis and image processing for detecting 
different features of a digital image. One of them is the convolution operation, 
which can be carried out using different types of filters. 

Convolution preserves the spatial relationship between pixels by learning 
image features using small squares of input data. We will not go into the 
mathematical details of convolution here, but will try to understand how it works 
over images. 

As we know, every image can be considered as a matrix of pixel values. 
Consider a 5×5 image whose pixel values are only 0 and 1 (note that for a 
grayscale image, pixel values range from 0 to 255, the green matrix below is a 
special case where pixel values are only 0 and 1), see Fig. 5.86. 

 
Fig. 5.86 Binary image matrix 

Also, consider another 3×3 matrix shown below (Fig. 5.87): 

 
Fig. 5.87 Convolution filter (kernel matrix) 

Then, the convolution of the 5×5 image and the 3×3 matrix can be computed 
as shown in Fig. 5.88. 
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Fig. 5.88 Illustration of convolution process. Considering the multiplication and summation of 

the corresponding image and convolution filter elements, i.e 
4 = 1×1 + 1×0 + 1×1 + 3 = 1×1 + 1×0 + 0×1 + 
      0×0 + 1×1 + 1×0 +       1×0 + 1×1 + 1×0 + 
      0×1 + 0×0 + 1×1       0×1 + 1×0 + 1×1 

 
Let us consider an example for the convolution in case of different filters. The 
kernel matrices of the filters are: edge detect: M1 and sharpen 

   
   
   
   
   

⇒
0 1 0 0 -1 0

M1= 1 -4 1 ;M2= -1 5 -1 ;

0 1 0 0 -1 0
 

imB=Import["L:\\BudapestCNN.jpg"]⇒
 

See Fig. 5.89 

⇐   
Fig. 5.89 Original image 

ImageData[imB]//Dimensions⇒  
{267,474,3}⇐  

Let us employ different kernels. 
Edge detection (Fig. 5.90), 

im1=ImageConvolve[imB,M1]⇒
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⇐   
Fig. 5.90 Detected edges 

Sharpening (Fig. 5.91), 
im2=ImageConvolve[imB,M2]⇒

 

⇐   
Fig. 5.91 Sharpened image 

Blurring (Fig. 5.92), 
im3=Blur[imB,5]⇒

 

⇐   
Fig. 5.92 Blurred image 

Map[(ImageData[#]//Dimensions)&,{im1,im2,im3}]⇒  
{{267,474,3},{267,474,3},{267,474,3}}⇐  

The result of convolution operation, the output matrix is called Convolved 
Feature or Feature Map. 
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Remark 
In case of training CNN, the elements of the kernel matrix also parameters, and 
should be computed like the weights of the network. 

5.7.5  Spatial Pooling 

Another mapping operation is the Spatial Pooling (also called sub-sampling or 
downsampling). This operation reduces the dimensionality of each feature map 
but retains the most important information. Spatial Pooling can be of different 
types: Max, Average, Sum etc. 

In case of Max Pooling (most frequent), we define a spatial neighborhood (for 
example, a 2×2 window) and take the largest element from the rectified feature 
map within that window.  

Instead of taking the largest element we could also take the average (Average 
Pooling) or sum of all elements in that window. In practice, Max Pooling has been 
shown to work better. 

Figure 5.93 below shows an example of Max Pooling operation on a Rectified 
Feature map (obtained after convolution + ReLU operation) by using a 2×2 
window. 

 
Fig. 5.93 Binary image matrix 

Let us consider the following image matrix: 

1 1 2 4

5 6 7 8
M ;

3 2 1 0

1 2 3 4

  
  
  =        

⇒



 

Application pooling via PoolingLayer in Mathematica, 
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pool=PoolingLayer[{2,2},2,"Input" {1,4,4}]⇒ →  
PoolingLayer⇐

 
Result image matrix after pooling 
Flatten[pool[M],1]//MatrixForm⇒  
6. 8.

3. 4.
⇐

 
 
 

 

Let us apply this pooling operation to the original Budapest image, Fig. 5.89. 
Its original size is 
ImageData[imB]//Dimensions⇒  
{267,474,3}⇐  
pool=PoolingLayer[2,2,"Input"  NetEncoder["Image"],

"Output"  NetDecoder["Image"],"Function" Max]

⇒ →
→ →  

PoolingLayer⇐

 
The result can be seen in Fig. 5.94. 
imRP=pool[imB]⇒

 

⇐   
Fig. 5.94 The result of max pooling 

The size of the reduced image is 
ImageData[imRP]//Dimensions⇒  
{64,64,3}⇐  

5.7  Convolutional Neural Networks  
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5.7.6  Feature Extraction via CNN 

These concepts introduced above are integrated into the convolutional neural 
networks, while traditional networks basically carry out classification separately 
from the feature extraction which is carried out for example via pixel based, 
Fourier as well as wavelet transformation, see Fig. 5.95. 

 
Fig. 5.95 Traditional solution of image classification via neural network. Feature extraction 

and classification are separated 

The convolution layer generates new images called feature maps. The feature 
map accentuates the unique features of the original image, see Fig. 5.96. 

 
Fig. 5.96 Image classification via CNN 

Figure 5.97 below illustrates the series of feature mappings as well as feature 
vectors of the fully connected classification layers (FC). 
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Fig. 5.97 Image go-through the CNN 

Figure 5.98 illustrates the detailed structure of a CNN, 

 
Fig. 5.98 Detailed structure of a CNN for image classification 

5.7.7  Image Classification 

Let us see an example for the CNN classification. We assume there are three 
clusters: balls, persons and flowers, see Figs. 5.99, 5.100 and 5.101. 
Clear[persons,flowers,balls];⇒  

Let us label the elements of these clusters, 
⇒ →balls=Map[ImageResize[ ,{32,32}] bal# l &,  

{ , , , , , , , , , 

  , , , , , , , , }] 

5.7  Convolutional Neural Networks  
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⇐   { →ball, →ball, →ball, →ball, →ball, 

 →ball, →ball, →ball, →ball, →ball, 

   →ball, →ball, →ball, →ball, →ball, 

 →ball, →ball, →ball} 
Fig. 5.99 Cluster of balls 

⇒ →persons=Map[ImageResize[ ,{32,32}] perso# n &,  

{ , , , , , , , , 

, , , , , , , , , 

, , }] 

⇐  { →person, →person, →person, →person, 

     →person, →person, →person, →person, 

    →person, →person, →person, →person, 

    →person, →person, →person, →person, 

    →person, →person, →person, →person} 
Fig. 5.100 Cluster of persons 

⇒ →flowers=Map[ImageResize[ ,{32,32}] flowe# r &, 

{ , , , , , , , , , 

 , , , , , , , , , 

 , , }] 
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⇐  { →flower, →flower, →flower, →flower, 

     →flower, →flower, →flower, →flower, 

    →flower, →flower, →flower, →flower, 

    →flower, →flower, →flower, →flower, 

    →flower, →flower, →flower, →flower, 

    →flower} 
Fig. 5.101 Cluster of flowers 

The training set is 
⇒ trainingData=Join[flowers,persons,balls]; 
⇒ classes = Union@Values[trainingData] 
⇐ {ball,flower,person}  

We employ a simple CNN 
⇒  

lenet = NetChain[  

⇒

⇒

⇒

(*first convolution 20 feature images*)

(*activation function (ReLU) non-linearity, sparsity*)

(*max pooling downsampling*)

{

ConvolutionLayer[20,3],  

ElementwiseLayer[Ramp], 

PoolingLayer[2,2],      

  

⇒

⇒

⇒

(*second convolution 50 feature images*)

(*activation function (ReLU) non-linearity, sparsity*)

   (*max pooling downsampling*)

ConvolutionLayer[30,3], 

ElementwiseLayer[Ramp], 

PoolingLayer[2,2],    

Flatt ⇒   (*flattening images to vector*)enLayer[],       

  

⇒

⇒

(*first fully connected layer

                                       feature vector from image features*)

(*activation function (ReLU)  non - linearity, s

DotPlusLayer[400],      

ElementwiseLayer[Ramp], 

⇒

parsity*)

(*second fully connected layer class prediction*)

(*normalization*)

DotPlusLayer[3],        

SoftmaxLayer[]          

  

⇒

⇒

(*encoder image to tensor*)

(*decoder tensor to class*)

},

"Input"->NetEncoder[{"Image",{32,32}}],     

"Output"->NetDecoder[{"Class",classes}]     

]
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Netchain⇐

 
Let us train the network, 

⇒ lenet=NetInitialize[lenet];  
⇒ →classifier = NetTrain[lenet, trainingData,MaxTrainingRounds 200] 

Netchain⇐

 
The test sets are (Fig. 5.102), 

⇒ testDataBalls = Map[ImageResize[#, {32, 32}] &, 

 { , , , , , }] 
⇒ testDataPersons = Map[ImageResize[#, {32, 32}] &, 

 { , , , , , }] 
⇒ testDataFlowers = Map[ImageResize[#, {32, 32}] &, 

 { , , , , , }] 
⇒ testData=Join[testDataPersons,testDataFlowers,testDataBalls] 

⇐ { , , , , , , , , , 

      , , , , , , , , }] 
Fig. 5.102 Test set containing objects from all of the three different classes 

Let us employ the CNN classifier, 

⇒ classifier[testData]
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⇐ {person,person,person,person,person,person,person,flower,flower,

flower,flower,flower,ball,person,person,ball,ball,ball}
 

We can see the detailed output of the SoftMax layer, namely 
⇒ probabilities[i_Image] := Dataset[MapAt[Style[#, Bold, Red] &,

 #, Position[#, Max[#]]] &[classifier[i, "Probabilities"]]]  
For example 

⇒ probabilities[
 
] 

⇐

 
Let us create a classifier function for the test cluster (Fig. 5.103), 

⇒ TestDataL ={ 

       →person, →person, →person, →person, 

       → person, →person, →flower, →flower, 

       →flower, →flower, →flower, →flower, 

       →ball, →ball, →ball, →ball, 

       →ball, →ball} 
Fig. 5.103 Test set of the three sets 

⇒ cm = ClassifierMeasurements[classifier, testDataL] 
ClassifierMeasurementsObject⇐

 
The overall accuracy of the CNN on the test cluster is, 

⇒ cm["Accuracy"]
 0.777778⇐  

Special statistics also can be provided, 
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⇒

→
→

Dataset[

Transpose@AssociationThread[{"Precision","Recall","FScore"},

cm[{"Precision","Recall","FScore"}]/.

{x_/;x>.75: Style[x,Darker@Green],

x_/;x<.5: Style[x,Darker@Red]}]]

 

⇐

 

The confusion matrix explores the classification results graphically (Fig. 5.104). 

⇒ cm["ConfusionMatrixPlot"]
 

⇐   

Fig. 5.104 Confusion matrix of the result of the test set classification 

5.7.8  Image Clustering 

Clustering is an unsupervised technique as we have learned. Now we consider a 
special case of it. We have a cluster and an element which was not included in it. 
Let us find the element of the cluster which is “closest” to this excluded image.  

Let us consider the data set of dog images (Fig. 5.105), 

dataset=⇒  
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Fig. 5.105 Images of dogs for clustering 

Let us train a dimension reducer function for this dataset. Now we employ 
numerical vector of 10 elements, 
dr=DimensionReduction[dataset,10]⇒  
DimensionReducerFunction⇐

 
We generate a function in this reduced space which can find the closest 

element to one of the elements of the original data set, 

nf=Nearest[dr[dataset] Automatic]⇒ →  
NearestFunction⇐

 
Using this, the function that displays the nearest image of the dataset: 
nearestdog=dataset[[First@nf[dr[#]]]]&;⇒  

Use this function on images that are not in the dataset (Fig. 5.106): 

neares [tdog⇒ ] 

⇐   

neares [tdog⇒ ] 

⇐   

5.7  Convolutional Neural Networks  
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neares [tdog⇒ ] 

⇐   

Fig. 5.106 Images of dogs and the nearest ones provided by the Nearest function 

5.7.9  Object Localization and Identification 

An object detection problem can be approached as either a classification problem 
or a regression problem. As a classification problem, the image is divided into 
small patches, each of which will be run through a classifier to determine whether 
there are objects in the patch. Then the bounding boxes are be assigned to locate 
around patches that are classified with a high probability of present of an object. 

In the regression approach, the whole image will be run through a 
convolutional neural network to directly generate one or more bounding boxes for 
objects in the images. 

Here we introduce an object detector using the tiny version of the You Only 
Look Once (YOLO) approach (Redmon 2017). 
Hyperlink["https://arxiv.org/pdf/1506.02640.pdf"]⇒  
https://arxiv.org/pdf/1506.02640.pdf⇐  

The tiny YOLO v1 consists of 9 convolution layers and 3 full connected 
layers. Each convolution layer consists of convolution, leaky ReLU and max 
pooling operations. The first 9 convolution layers can be understood as the feature 
extractor, whereas the last three full connected layers can be considered as the 
"regression head" that predicts the bounding boxes. 

There is no native leaky ReLU layer in Mathematica, but it can be constructed 
easily using an ElementwiseLayer. 
leayReLU[alpha_]:=ElementwiseLayer[Ramp[#]-alpha*Ramp[-#]&]⇒  

with this, the YOLO network can be constructed as 
YOLO=NetInitialize@NetChain[{ElementwiseLayer[2.*#-1.&],
ConvolutionLayer[16,3,"PaddingSize" 1],leayReLU[0.1],
PoolingLayer[2,"Stride" 2],ConvolutionLayer[32,3,
"PaddingSize" 1],leayReLU[0.1],PoolingLay

⇒
→

→
→ er[2,"Stride" 2],

ConvolutionLayer[64,3,"PaddingSize" 1],leayReLU[0.1],
→

→

 

https://arxiv.org/pdf/1506.02640.pdf"]
https://arxiv.org/pdf/1506.02640.pdf
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PoolingLayer[2,"Stride" 2],ConvolutionLayer[128,3,
"PaddingSize" 1],leayReLU[0.1],PoolingLayer[2,"Stride" 2],
ConvolutionLayer[256,3,"PaddingSize" 1],leayReLU[0.1],
PoolingLayer[2,"Stride" 2],Convolution

→
→ →

→
→ Layer[512,3,

"PaddingSize" 1],leayReLU[0.1],PoolingLayer[2,"Stride" 2],→ →

 

ConvolutionLayer[1024,3,"PaddingSize" 1],leayReLU[0.1],
ConvolutionLayer[1024,3,"PaddingSize" 1],leayReLU[0.1],
ConvolutionLayer[1024,3,"PaddingSize" 1],leayReLU[0.1],
FlattenLayer[],LinearLayer[256],Lin

→
→
→

earLayer[4096],leayReLU[0.1],
LinearLayer[1470]},"Input" NetEncoder[{"Image",{448,448}}]]→

 

NetChain⇐

 
Training the YOLO network is time-consuming. We will use the pre-trained 

weights instead. The pre-trained weights can be downloaded as a binary file of 
size 172 Mb. 

Using NetExtract and NetReplacePart we can load the pre-trained 
weights into our model, 
modelWeights[net_,data_]:=Module[{newnet,as,weightPos,rule,
layerIndex,linearIndex},layerIndex=
Flatten[Position[NetExtract[
net,All],_ConvolutionLayer|_LinearLayer]];
linearIndex=Flatten[Position[NetExt

⇒

ract[net,All],_LinearLayer]];
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as=Flatten[Table[{{n,"Biases"} Dimensions@NetExtract[net,
{n,"Biases"}],{n,"Weights"}->Dimensions@NetExtract[net,
{n,"Weights"}]},{n,layerIndex}],1];
weightPos=#+{1,0}&/@Partition[Prepend[Accumulate[
Time

→

s@@@as[[All,2]]],0],2,1];

 

rule=Table[as[[n,1]] ArrayReshape[Take[data,weightPos[[n]]],
as[[n,2]]],{n,1,Length@as}];
newnet=NetReplacePart[net,rule];
newnet=NetReplacePart[newnet,Table[
{n,"Weights"} Transpose@ArrayReshape[NetExtra

→

→ ct[newnet,
{n,"Weights"}],Reverse@Dimensions[NetExtract[newnet,
{n,"Weights"}]]],{n,linearIndex}]];
newnet]

 

data=

BinaryReadList["G:\\Pink\\yolo-tiny.weights","Real32"][[5;;-1]];

YOLO=modelWeights[YOLO,data];

⇒

 

The output of this network is a vector of 1470 elements, which contains the 
coordinates and confidence of the predicted bounding boxes for different classes. 
The tiny YOLO v1 is trained on the PASCAL VOC dataset which has 20 classes: 
labels={"aeroplane","bicycle","bird","boat","bottle","bus","car",

"cat","chair","cow","diningtable","dog","horse","motorbike",

"person","pottedplant","sheep","sofa","train","tvmonitor"};

⇒

 

And the information for the output vector from the network is organized in the 
following way, see Fig. 5.107. 

 

Fig. 5.107 The structure of the output vector of YOLO network 

The output vector is divided into three parts, giving the probability, confidence 
and box coordinates. Each of these three parts is also further divided into 49 small 
regions, corresponding to the predictions at each cell. Each of the 49 cells will 
have two box predictions. In post processing steps, we take this 1470 vector 
output from the network to generate the boxes with a probability higher than a 
certain threshold. The overlapping boxes will be resolved using the non-max 
suppression method. 
coordToBox[center_,boxCord_,scaling_: 1]:=Module[{bx,by,w,h},
(*conver from {centerx,centery,width,height}to Rectangle object*)
bx=(center[[1]]+boxCord[[1]])/7.;
by=(center[[2]]+boxCord[[2]])/7.;
w=boxCo

⇒

rd[[3]]*scaling;
h=boxCord[[4]]*scaling;
Rectangle[{bx-w/2,by-h/2},{bx+w/2,by+h/2}]]
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nonMaxSuppression[boxes_,overlapThreshold_,confidThreshold_]:=
Module[{lth=Length@boxes,boxesSorted,boxi,boxj},
(*non-max suppresion to eliminate overlapping boxes*)
boxesSorted=GroupBy[boxes,#class&][All,
SortBy[#prob&]/*Reverse];
Do[Do[boxi=boxesSorted[[c,n]];
If[boxi["prob"]!=0,Do[boxj=boxesSorted[[c,m]];
(*if two boxes overlap largely,kill the box with low confidence*)

 

If[RegionMeasure[RegionIntersection[boxi["coord"],
boxj["coord"]]]/RegionMeasure[
RegionUnion[boxi["coord"],boxj["coord"]]]>=
overlapThreshold,boxesSorted=
ReplacePart[boxesSorted,{c,m,"prob"} 0]];,
{m,n+1

→
,Length[boxesSorted[[c]]]}]],

{n,1,Length[boxesSorted[[c]]]}],{c,1,Length@boxesSorted}];
boxesSorted[All,Select[#prob>0&]]]

 

labelBox[class_ box_]:=Module[{coord,textCoord},
(*convert class\[Rule]boxes to labeled boxes*)coord=List@@box;
textCoord={(coord[[1,1]]+coord[[2,1]])/2.,coord[[1,2]]-0.04};
{{GeometricTransformation[Tex

→

t[Style[labels[[class]],25,Yellow],
textCoord],ReflectionTransform[{0,1},textCoord]]},
EdgeForm[Directive[Red,Thick]],Transparent,box}]

 

drawBoxes[img_,boxes_]:=Module[{labeledBoxes},
(*draw boxes with labels*)labeledBoxes=
labelBox/@Flatten[Thread/@Normal@Normal@boxes[All,All,"coord"]];
Graphics[GeometricTransformation[{Raster[ImageData[img],{{0,0},
{1,1}}],labeledBoxes},ReflectionTransform[{0,1},{0,1/2}]]]]

 

postProcess[img_,vec_,boxScaling_: 0.7,confidentThreshold_:0.15,
overlapThreshold_: 0.4]:=Module[{grid,prob,confid,boxCoord,
boxes,boxNonMax},grid=Flatten[Table[{i,j},{j,0,6},{i,0,6}],1];
prob=Partition[vec[[1;;980]],20];
confid=Partition[vec[[980+1;;980+98]],2];
boxCoord=ArrayReshape[vec[[980+98+1;;-1]],{49,2,4}];

 

boxes=Dataset@Select[
Flatten@Table[<|"coord" coordToBox[grid[[i]],boxCoord[[i,b]],
boxScaling],"class" c,"prob" If[#<=confidentThreshold,0,#]&@
(prob[[i,c]]*confid[[i,b]])|>,{c,1,20},{b,1,2},{i,1,49}],
#

→
→ →

prob>=confidentThreshold&];

 

boxNonMax=nonMaxSuppression[boxes,overlapThreshold,
confidentThreshold];
drawBoxes[Image[img],boxNonMax]]

 

Let us test our CNN, see Fig. 5.108. 
urls={"http://i.imgur.com/n2u0N3K.jpg",

"http://i.imgur.com/Bpb60U1.jpg","http://i.imgur.com/CMZ6Qer.jpg"

"http://i.imgur.com/lnEE8C7.jpg"};

mgs=Import/@urls

⇒
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⇐
 { , , 

  , } 
Fig. 5.108 Test images for YOLO network 

The results can be seen on Fig. 5.109. 

⇐
  

Fig. 5.109 The results of the YOLO network. Since the face of the white horse is not clear, the 
network failed to correctly recognize this object 

 
Further test images and their results can be seen in the following figures (Figs. 
5.110, 5.111, 5.112 and 5.113). 
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k= { } 

Fig. 5.110 Test image of horses 

With[{i=ImageResize[#,{448,448}]},postProcess[i,YOLO[i]]]&/@k⇒  

{ } 

Fig. 5.111 Identification and localization of horse objects 

and more test images, 

⇐{ , ,  

  , , , 

  , } 
Fig. 5.112 Future test images for location and identification 

With[{i = ImageResize[#, {448, 448}]}, postProcess[i, 

YOLO[i]]] & /@ imgs //ImageCollage

⇒
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⇐  
Fig. 5.113 The results of the YOLO network 

5.7.10  Cat or Dog? 

To demonstrate the Python code for creating and employing CNN, we introduce 
another example, a simple binary classification problem, namely classification of 
cat and dog images, see Fig. 5.114. 
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⇐
  

Fig. 5.114 Simple binary classification problem using labeled photos of cats and dogs 

The detailed explanation of the Python code can be found in 
https://github.com/venkateshtata/cnn_medium./blob/master/cnn.py. 

We have 47-47 images in the training set, and 15 -15 images in the test set. 
First let us import all the required Keras packages, which we are going to use 

to build our CNN. Make sure that every package is installed: Keras using 
Tensorflow backend and using Theano backend. 

  

# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense

 

Let us create the structure of our CNN, via defining the layers, activation 
functions etc. 

  

# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3),

activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))

 

We shall determine the type of the training algorithm as well as the loss 
function. 

  
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss =

'binary_crossentropy', metrics = ['accuracy'])
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Now images of the training and test sets will be loaded, 

  

# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory(

'M:/training_setA/training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = 

test_datagen.flow_from_directory('M:/test_setA/test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')

 

Found 94 images belonging to 2 classes. 
Found 30 images belonging to 2 classes. 

Then let us train the network. The test set will be employed as validation set, 

  

classifier.fit_generator(training_set,
steps_per_epoch = 94,
epochs = 5,
verbose=0,
validation_data = test_set,
validation_steps = 30)

 

Let us check the result of the classification on the training set, 

  score = classifier.predict_generator(training_set)
score

 

-8

-7

-6

0.999554,0.998548,0.999348,0.000058611,8.1634 10 ,0.98943,

0.998358,6.60737 10 ,0.000125519,0.999842,0.999999,0.999987,

1.,0.99537,0.991236,0.999861

{

0.000749577,0.0000295078,

0.00086288,1.1753 0

,

1 1

×

×

×

⇐

-6

,0.997258,0.999844,0.767423,1.,

0.0000296309,0.000494728,2.25211 10 ,0.000480905,0.99 }9989×

 

ntest=Flatten[%];⇒  
ntest//Length⇒  
94⇐  
cat={};dog={};⇒  
Do[If[ntest[[i]]>=0.5,AppendTo[dog,ntest[[i]]],

AppendTo[cat,ntest[[i]]]],{i,1,94}];

⇒
 

dog//Length⇒  
47⇐  
cat//Length⇒  
47⇐  


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It means that the classification on the training set is perfect, 100 %. Now let 
us check the test (validation) set. 

  score = classifier.predict_generator(test_set)
score

 

{{0.999985},{1.},{1.},{0.648371},{0.999989},{0.999998},

{0.999977},{0.999992},{0.999999},{0.0274209},{0.00695746},

{0.000578081},{0.00398403},{0.0000143432},{0.0062359},

{0.303308},{0.995697},{0.340169}

⇐

,{0.6462},{0.547773},

{0.356563},{0.989602},{0.105532},{0.999998},{0.957598},

{0.952294},{0.663439},{0.99315},{0.0863328},{0.418782}}

 

ntest=Flatten[%];⇒  
ntest//Length⇒  
30⇐  
cat={};dog={};⇒  
Do[If[ntest[[i]]>=0.5,AppendTo[dog,ntest[[i]]],

AppendTo[cat,ntest[[i]]]],{i,1,30}];

⇒
 

dog//Length⇒  
18⇐  
cat//Length⇒  
12⇐  

Which means that 6 cat images are classified as dog image. So the score of the 
classification is 

(1.-6/30) 100⇒  
80⇐  

namely 80 % on the test (validation) set. 
Since the test set was employed as validation set, let test our CNN on further 

test samples (Fig. 5.115): 

⇒  cat1= , cat2= , cat3=, ; 

⇒  dog1= , dog2= , dog=, ; 

Fig. 5.115 Further images which were not involved in the training process 

Employing for image cat3, 

5.7  Convolutional Neural Networks  
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# Part 3 - Making new predictions
import numpy as np
from keras.preprocessing import image
test_image = image.load_img('M:/cat_3.jpg', 

target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)
result

 

{{0.}}⇐  
Employing for image dog1, 

  

# Part 3 - Making new predictions
import numpy as np
from keras.preprocessing import image
test_image = image.load_img('M:/dog_1.jpg', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = classifier.predict(test_image)
result

 

{{1.}}⇐  

5.8  Comparison of Neural Networks 

Here we shall compare the performances of Hopfield Network (HN) and the 
Convolutional Neural Network (CNN). 

Loading Data. 
Obtaining the MNIST data sets from Wolfram depository, 

⇒ testData = ResourceData["MNIST", "TestData"]; 
We shall employ only a restricted size of this, namely selecting 300 digits 

randomly 
⇒ data=RandomSample[testData,300];  

and selecting the digits of zeros, 
⇒ zero=Select[data,#[[2]]==0&] 
⇐{  →0,  →0,  →0,  →0,  →0,  →0,  →0,  →0, 

 →0,  →0,  →0,  →0,  →0,  →0,  →0,  →0, 

 →0,  →0,  →0,  →0,  →0,  →0,  →0,  →0}; 

as well as the digits of ones, 



  413 

⇒ one=Select[data,#[[2]]==1&] 
⇐{  →1,  →1,  →1,  →1,  →1,  →1,  →1,  →1, 

 →1,  →1,  →1,  →1,  →1,  →1,  →1,  →1, 

 →1,  →1,  →1,  →1,  →1,  →1,  →1,  →1, 

 →1,  →1,  →1,  →1,  →1,  →1,  →1,  →1, 

 →1,  →1}; 

Let us take the digits separately 
⇒ z=Map[#[[1]]&,zero]; 
⇒ o=Map[#[[1]]&,one]; 

Data Preparation for HN 

For HP data we employ data reduction. Each digit will be represented by a 
vector of two dimensions, 

⇒ dr=DimensionReduction[Join[z,o],2] 

⇐ DimensionReducerFunction  

To get the coordinates of the image of the digits we apply the reduction 
function, 

⇒ zz=dr[z]; 
⇒ oo=dr[o]; 

Let us display the corresponding points (Fig. 5.116) 
⇒ →ListPlot[{zz,oo},Frame True] 

⇐   
Fig. 5.116 The points of digits after dimension reduction 

Saving data for HP 

5.8  Comparison of  Neural Networks  
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⇒ Export["M:\\dataZero.dat",zz]; 
⇒ Export["M:\\dataOne.dat",oo];  

Hopfield Solution 

The next part should be evaluated in Mathematica version 10.3 
⇒ ZZ=Import["M:\\dataZero.dat"]; 
⇒ OO=Import["M:\\dataOne.dat"];  

We shall use 16 digits for training and 8 for testing. 
⇒ zz=Take[ZZ,{1,16}];  
⇒ oo=Take[OO,{1,16}]; 

Let us compute the average of the training samples as equilibrium points of 
the Hopfield network, 

⇒ Zeq=Mean[zz] 
⇐ {11.7345,0.060569} 
⇒ Qeq=Mean[oo] 
⇐ {-8.47825,-0.279838}  

The training elements and the two equilibrium points (Fig. 5.117) 
⇒ →

→ →

Show[{ListPlot[{zz,oo},Frame True],ListPlot[{{Zeq},

{Qeq}},PlotStyle {Black,Black},PlotMarkers {" " " "}]}],ø ø  

⇐   
Fig. 5.117 Training elements after dimension reduction with the equilibrium points (stars) 

Loading the Neural Network package, 

<<NeuralNets` 

We shall employ continuous Hopfield network with Saturated Linear 
activation function, which is an approximation of the tangent hyperbolic function 
(Fig. 5.118) 

⇒ Plot[{Tanh[x],SaturatedLinear[x]},{x,-2,2}] 



  415 

⇐   
Fig. 5.118 Saturated Linear activation function (brown) compared with Tanh activation 

function (blue) 

. 

It means that the output of the network will be close to the values {1, 1} and 
{−1,−1}. Let us trained the network 

⇒
→ →

hop=HopfieldFit[{Zeq,Qeq},

NetType Continuous,Neuron SaturatedLinear] 
⇐ → →

→ →
→

Hopfield[W,{NetType Continuous,WorkingPrecision 4,

CreationDate {2018,12,2,19,18,27.6219413},Dt 0.00474777,

Neuron SaturatedLinear}]

 

Employing it for an elements 
⇒ hop[zz[[11]]] 
⇐ {{1.02087,1.0112}} 

and 
⇒ hop[oo[[11]]] 
⇐ {{-1.02096,-0.996912}} 

Let us visualize the trajectories one of the two input elements. The starting 
point (Fig. 5.119), 

⇒ zz[[11]] 
⇐ {18.7954,10.5539}  
⇒ →Show[NetPlot[hop,{zz[[11]]}],ImageSize 300]
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⇐   
Fig. 5.119 Trajectory of 11th element of the training set of zeros 

This figure shows how the trajectories are converging to the equilibrium point 
(1,1) which represents the zero digit. 

It is also interesting to see how the energy values of training elements are 
converging to the two equilibrium points (−1, −1), (1,1), (Fig. 5.120), 

⇒ →
→ →

NetPlot[hop,Join[zz,oo],DataFormat Surface,

BoxRatios  {1, 0.7, 0.4},PlotRange Automatic] 

⇐   
Fig. 5.120 Trajectories of the training set converging to the two equilibrium points 

How can we test digits? 
Let us consider the test elements, 

⇒ zztest=Take[ZZ,{17,24}]; 
⇒ ootest=Take[OO,{17,24}];  
⇒ Map[hop[#]&,Join[zztest,ootest]] 
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⇐ {{{-1.00816,-0.979095}},{{1.02095,1.00143}},{{1.01302,0.979066}},

{{1.02089,1.00209}},{{1.0209,0.998232}},{{1.02089,0.989609}},

{{1.02094,0.999123}},{{1.02093,1.00526}},{{-1.0209,-0.997295}},

{{-1.02091,-1.00132}},{{-1.02096,-0.994779}},

{{-1.02026,-0.979135}},{{-1.02091,-0.996598}},

{{-1.0209,-0.994331}},{{-1.0209,-0.999966}},

{{-1.02096,-0.997844}}}

 

The first element in the zeros test set is misinterpreted, not surprisingly, see 
the figure below (Fig. 5.121) 

⇒ zztest[[1]] 
⇐ {-3.12604,4.44976} 
⇒ →ListPlot[{zztest,ootest,{Zeq},{Qeq}},Frame True] 

⇐   
Fig. 5.121 Test set 

A zero element in the left upper quadrat (blue) 

⇒ zztest[[1]] 
⇐ {-3.12604,4.44976} 

is too close to the equilibrium point representing one, therefore it is 
"misclassified" 

⇒ hop[zztest[[1]]] 
⇐ {{-1.00816,-0.979095}} 

Convolution Network Solution 

The training set 

⇒ zero={  →0,  →0,  →0,  →0,  →0,  →0,  →0, 

 →0,  →0,  →0,  →0,  →0,  →0,  →0, 

 →0,  →0,  →0,  →0,  →0,  →0,  →0, 

5.8  Comparison of  Neural Networks  
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 →0,  →0,  →0}; 

⇒ one={  →1,  →1,  →1,  →1,  →1,  →1,  →1, 

 →1,  →1,  →1,  →1,  →1,  →1,  →1, 

 →1,  →1,  →1,  →1,  →1,  →1,  →1, 

 →1,  →1,  →1,  →1,  →1,  →1,  →1, 

 →1,  →1,  →1,  →1,  →1,  →1}; 

We employ the LeNet model (Fig. 5.122), 

 
Fig. 5.122 General structure of a LeNet CNN mode 

⇒ net=NetModel["LeNet"]; 
The structure of our net, 

⇒ net  
⇐ NetChain

 
In graphics form, in two parts, 

⇒ NetGraph[NetTake[net,5]] 
⇐ NetGraph
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⇒ NetGraph[NetTake[net,{6,11}]] 
⇐ NetGraph

 
⇒ trainingset=Join[Map[Take[#,{1,16}]&,{zero,one}]]//Flatten  
⇐{  →0,  →0,  →0,  →0,  →0,  →0,  →0,  →0, 

 →0,  →0,  →0,  →0,  →0,  →0,  →0,  →0, 

 →1,  →1,  →1,  →1,  →1,  →1,  →1,  →1, 

 →1,  →1,  →1,  →1,  →1,  →1,  →1,  →1,}; 

Training the network. 
The parameters of the training, 

⇒ →result=NetTrain[net, trainingset,All, MaxTrainingRounds  20] 
⇐ NetTrainResultsObject

 
The trained network, 

⇒
→

AbsoluteTiming[trained=

NetTrain[net, trainingset, MaxTrainingRounds  20];] 
⇐ {0.867204,Null} 

⇒ testset=

Map[#[[1]]&,Flatten[Join[Map[Take[#,{17,24}]&,{zero,one}]]]] 

⇐{ , , , , , , , , 

, , , , , , , }; 

⇒ trained[testset] 
⇐ {1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1}  

The first element is misinterpreted here, too. 
Summing it up the CNN and HN provide the same result, and the training 

requires very short time, less than 1 second in both cases. However CNN does not 
need data reduction. 

 
 
 

5.8  Comparison of  Neural Networks  
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A classification problem using Logistic Regression method is employed. After 
dimension reduction via AudioEncoding, the hyperparameters maximizing the 
classification accuracy are computed applying different types of minimization 
algorithms such as simulating annealing, differential evaluation, and random 
search method. The efficiencies of these methods are compared. 

Hyperparameters are different parameter values that are used to control the 
learning process and have a significant effect on the performance of machine 
learning models. 

This means that during the optimization process, we train the model with 
selected hyperparameter values and predict the target feature. Then we evaluate 
the prediction error and give it back to the optimizer. The optimizer will decide 
which values to check and iterate again. You will learn how to create objective 
functions based on the practical example. 

Here three global optimization techniques are employed to demonstrate this 
operation implemented in Wolfram Mathematica in case of Logistic Regression. 

6.1  Data 

We have 16 - 16 images for vacant as well as residential lands (Fig. 6.1) 

⇒ vacant=  

{ , , , , , , 

  , , , , , , 

  , , , } 

https://doi.org/10.1007/978-3-031-72817-4_6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72817-4_6&domain=pdf


 

⇒ residental=

{ , , , , , , 

, , , , , , 

, , , }
Fig. 6.1 Vacant and residental land areas 

Assembling and resizing the images 
⇒ lands=Join[vacant,residential];

⇒ landsReduced=Map[ImageResize[#,{1024,1024}]&,lands];

⇒ →reduced=DimensionReduce[landsReduced,2,Method "AutoEncoder"];

⇒ Length[reduced]

⇐ 32

The two sets of vectors are (Fig. 6.2) 
⇒ reduced1=Take[reduced,{1,16}];

⇒ reduced2=Take[reduced,{17,32}];

⇒ →
→ → →

→

p0=ListPlot[{reduced1,reduced2},PlotStyle {Green,Red},

Frame True,Axes None,PlotMarkers {Automatic,Medium},

AspectRatio 1]
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Employing  AutoEncoder method based on neural network, the sizes of images 
are reduced to a vector of 2D 



 

⇐

Fig. 6.2 The green points represent the elements (pictures) of the class of the vacant 
land class, while the red squres represent the elements of the residential land class 

6.2  Classification Model 

Logistic Regression models the log probabilities of each class with a linear 
combination of numerical features; 

{ } ( )( ) ( ) ( ) { }1 2 1 2, , , , log | . , where , , ,k k
n mx x x x P class k x xθ θ θ θ θ= … = ∝ = …

 corresponds to the parameters for class k. The estimation of the parameter matrix 
( ) ( ) ( ){ }1 2, , , nclassθ θ θ θ= …  is done by minimizing the loss function

( )( ) 22
1

1 11

log |
2

nm n

i i i i
i ii

P class y xθ
λ

λ θ θ
= ==

− = + +∑∑ ∑  

⇒ label=Join[Table[0,16],Table[1,16]]

⇐ {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

⇒ →class=MapThread[#1 #2&,{reduced,label}];

As an illustration, let us pick up two values

λ λ⇒ 1=0.5 ; 2=0.5; 

Then the classification function is

 423 6.2  Classification Model  

Our aim is to find the optimal parameters 1 and 2, which maximize the accuracy 

of the classification! We consider the label values for the two simple sets 



 

λ λ
⇒ →

→ →
→

c=Classify[class,Method {"LogisticRegression",

"L1Regularization" 1, "L2Regularization" 2},

PerformanceGoal "Quality"]//Quiet;

 

The membership values of three random elements from the 32 ones are, 
⇒ c[reduced[[1]],"Probabilities"] 
⇐ → →<|0 0.997425,1 0.00257522|>  

⇒ c[reduced[[13]],"Probabilities"] 
⇐ → →<|0 0.600702,1 0.399298|>  

⇒ c[reduced[[24]],"Probabilities"] 
⇐ → →<|0 0.0221989,1 0.977801|>  

Let us display the results graphically (Fig. 6.3). 
⇒ r1=Transpose[reduced]; 
⇒ u1=Min[r1[[1]]] 
⇐ -1.54493  
⇒ u2=Max[r1[[1]]] 
⇐ 2.68087  

⇒ v1=Min[r1[[2]]] 
⇐ -2.19399  

⇒ v2=Max[r1[[2]]] 
⇐ 3.15745  
⇒

→ →
Show[{DensityPlot[c[{u,v}],{u,u1,u2},{v,v1,v2},

ColorFunction "CMYKColors",PlotPoints 100],p0}] 

⇐

  
Fig. 6.3 The black region represents the residential land class, while the blue region 

represents vacant land class 
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6.3  Quality of Classification 

⇒ cm=ClassifierMeasurements[c,class]

See Fig. 6.4.

⇐

Fig. 6.4 The first row of this matrix shows that from 16 learning set elements of 
vacant land class 4 elements were misclassified, while according to the second row, 

from 16 elements of the residential class only 1 element 

⇒ cm["Accuracy"]

⇐ 0.84375

6.4  Optimization of the Hyperparameters 

We are looking for the λ1 and λ2 model parameters, which maximize the accuracy 
of the classification. The objective function is, 
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λ λ
λ λ

⇒

→
→ →

→

G[{l1_,l2_}]:=Module[{ 1, 2,c},

1=l1; 2=l2;

c=ClassifierMeasurements[

Classify[class,Method {"LogisticRegression",

"L1Regularization" l1,"L2Regularization" l2},

PerformanceGoal "Quality"],class];

c["Accuracy"]]

 

For example, 
⇒ G[{0.5,0.3}] 
⇐ 0.84375  

Let us display our objective function. Preparation of proper form of the objective 
(see Figs. 6.5, 6.6 and 6.7) 

⇒ F=Flatten[

Table[{{0.1 i,0.1 j},G[{0.1 i,0.1 j}]},{i,0,10},{j,0,10}],1];

 
⇒ f=Interpolation[F] 

⇐ InterpolatingFunction  

⇒ H[{u_,v_}]:=f[u,v] 

λ λ
⇒

→ →1 2

ContourPlot[H[{x,y}],{x,0,1},{y,0,1},

FrameLabel {" ]"," ]"},ContourLabels True] 

⇐

  
Fig. 6.5 The figure shows the regions of the hyper parameters (light yellow) where the 

accuracy of the classification is the highest, roughly 0.94 

⇒ Plot3D[H[{x,y}],{x,0,1},{y,0,1}]
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⇐

  
Fig. 6.6 This figure shows clearly like Fig. 6.5, that the accuracy vs. hyper parameters 

function has more local optimums (maximum) 

λ λ
⇒

→ →
→ → →

ContourPlot[H[{x,y}],{x,0.,0.25},{y,0.,0.35},

FrameLabel {" 1"," 2"},ContourLabels True,

Contours 15,MaxRecursion 5,PlotPoints 100]

 

⇐

  
Fig. 6.7 This figure zooms out the regions of the local maximums 

 

These figures clearly show that there are more local maximums therefore a global 
technique is needed! 
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6.5  Optimization Methods 

In general efficient HPO (Hyper Parameter Optimization) methods are available, 
see Bischl et al. (2023). Here the following different standard global optimization 
methods have been employed in order to find the global maximum. 

6.5.1  Simulated Annealing 

Let us employ the built in function 
⇒ ≤ ≤ ≤ ≤

→
s=AbsoluteTiming[NMaximize[{H[{u,v}],0 u 1,0 v 1},

{u,v},Method "SimulatedAnnealing"]]
 

⇐ → →{0.2192,{0.946825,{u 0.0489546,v 0.242952}}}  

Running time 
⇒ ≤ ≤ ≤ ≤

→
→

AbsoluteTiming[sol=Reap[NMaximize[{H[{u,v}],0 u 1,0 v 1},

{u,v},EvaluationMonitor: Sow[{u,v}],

Method "SimulatedAnnealing"]];]

 

⇐ {0.0283513,Null}  

Function value and the solution 

⇒ sol[[1]] 
⇐ → →{0.946825,{u 0.0489546,v 0.242952}}  

Number of iterations 

⇒ {hist}=sol[[2]];  
⇒ Length[hist] 
⇐ 59  

6.5.2  Differential Evolution 

Let us employ the built in function 
⇒ ≤ ≤ ≤ ≤

→
s=AbsoluteTiming[NMaximize[{H[{u,v}],0 u 1,0 v 1},

{u,v},Method "DifferentialEvolution"]]
 

⇐ → →{0.32028,{0.946825,{u 0.0489546,v 0.242952}}} 

Running time 
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⇒ ≤ ≤ ≤ ≤
→

→

AbsoluteTiming[sol=Reap[NMaximize[{H[{u,v}],0 u 1,0 v 1},

{u,v},EvaluationMonitor: Sow[{u,v}],

Method "DifferentialEvolution"]];]

 

⇐ {0.334691,Null} 

Function value and the solution 

⇒ sol[[1]] 
⇐ → →{0.946825,{u 0.0489546,v 0.242952}}  

Number of iterations 

⇒ {hist}=sol[[2]];  
⇒ Length[hist] 
⇐ 1429  

6.5.3  Random Search 

Let us employ the built in function 
⇒ ≤ ≤ ≤ ≤

→
s=AbsoluteTiming[NMaximize[{H[{u,v}],0 u 1,0 v 1},

{u,v},Method "RandomSearch"]]
 

⇐ → →{0.400395,{0.946825,{u 0.0489546,v 0.242952}}} 

Running time 
⇒ ≤ ≤ ≤ ≤

→
→

AbsoluteTiming[sol=Reap[NMaximize[{H[{u,v}],0 u 1,0 v 1},

{u,v},EvaluationMonitor: Sow[{u,v}],

Method "RandomSearch"]];]

 

⇐ {0.364035,Null} 

Function value and the solution 

⇒ sol[[1]] 
⇐ → →{0.946825,{u 0.0489546,v 0.242952}}  

Number of iterations 

⇒ {hist}=sol[[2]];  
⇒ Length[hist] 
⇐ 106

 
Result for the three global optimization methods are summarised in Table 6.1.  

Table 6.1 Result of the three global optimization methods 

Method Number of Iteration Time [sec] 

Simulated Annealing 59 0.037 
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Differential Evolution 1429 0.435 
Random Search 106 0.346 

⇒ →pp1=ListPlot[{{0.0489546,0.242952}},PlotStyle {Blue,"+"}]; 
⇒ Show[{pp,pp1}]

 
See Fig. 6.8. 

⇐

  
Fig. 6.8 The result is the same as can be seen on Fig. 6.7 

 

Every built in algorithm found the same maximum. 

6.5.4  Black Hole 

In addition let us employ the Black Hole algorithm, see its code for 2D case: 
⇒ BlackHole02[fit_,xmin1_,xmin2_,xmax1_,xmax2_,ns_,ni_]:=

Module[{stars,starsfit,blackhole,opt,optloc,radius,popdist,

swallowed,newpositions,remainedstars,newstars,beg1,sol,i,j,n},

sol={};n=1;

stars=

stars=

Partition[Flatten[Table[{RandomReal[{xmin1,xmax1}],

RandomReal[{xmin2,xmax2}]},{i,1,ns}]],2];

While[n<ni,
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starsfit=Map[fit[#]&,stars];

blackhole=First[Position[starsfit,Max[starsfit]]//Flatten];

opt=fit[stars[[blackhole]]];

optloc=stars[[blackhole]];

radius=starsfit[[blackhole]]/Total[starsfit];

popdist=Map[Sqrt[Norm[{optloc-#}]]&,stars];

swallowed=Complement[Map[Position[popdist,#]&,Select[popdist,

#<=radius&]]//Flatten,{blackhole}];

 

If[swallowed=={},

newpositions=Map[(#+RandomReal[] (stars[[blackhole]]-#))&,

stars];

stars=newpositions,remainedstars=Complement[stars,

Map[stars[[#]]&,swallowed]];

newstars=Union[remainedstars,

 Table[{RandomReal[{xmin1,xmax1}],RandomReal[{xmin2,xmax2}]},

{i,1,Length[swallowed]}]];

stars=newstars];

AppendTo[sol,optloc];n++];sol]

 

where 
fit  − fitness function should be maximized 
xmin1, xmin2  − boundaries of the search space 
xmax1, xmax2  − boundaries of the search space 
ns  − number of stars 
ni − number of iterations 

⇒ s=AbsoluteTiming[BlackHole02[H,0.,0.,1.,1.,50,100]]; 

The computation time 

⇒ s[[1]] 
⇐ 0.165423  

Function value and the solution 

⇒ Last[s[[2]]] 
⇐ {0.0515758,0.241226}  

⇒ H[%] 
⇐ 0.946798  
⇒ → →

→ →
→

ListPlot[Map[Norm[#]&,s[[2]]],Joined True,PlotRange All,

ImageSize 350,Frame True,

FrameLabel {"Number of Iteration","Norm of Solution"}]  

See Fig. 6.9. 
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⇐

  
Fig. 6.9 The performance of the BH algorithm 

 
⇒ H[{0.0489546,0.242952}] 
⇐ 0.946825  

Now let us carry out the classification with optimal hyperparameters 

λ λ
⇒ →

→ →
→

c=Classify[class,Method {"LogisticRegression",

"L1Regularization" 1,"L2Regularization" 2},

PerformanceGoal "Quality"]//Quiet;
 

The membership values of three random elements from the 32 ones 
⇒ c[reduced[[1]],"Probabilities"] 

−< − > → >⇐ | 0 0.999991,1 9.08865 * 10 6 |  

⇒ c[reduced[[13]],"Probabilities"] 
⇐ → →<|0 0.766444,1 0.233556|>  

⇒ c[reduced[[24]],"Probabilities"] 
⇐ → →<|0 0.00125124,1 0.998749|>  

Let us graphically display the result (see Fig. 6.10) 
⇒ r1=Transpose[reduced]; 
⇒ u1=Min[r1[[1]]] 
⇐ -1.54493  
⇒ u2=Max[r1[[1]]] 
⇐ 2.68087  

⇒ v1=Min[r1[[2]]] 
⇐ −2.19399  

⇒ v2=Max[r1[[2]]] 
⇐ 3.15745  
⇒

→ →
Show[{DensityPlot[c[{u,v}],{u,u1,u2},{v,v1,v2},

ColorFunction "CMYKColors",PlotPoints 100],p0}]
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⇐

  
Fig. 6.10 Optimal result of classification in case of λ1 = 0.0489546 and λ2= 0.24295 

 

The quality of the classification (Fig. 6.11) 
⇒ cm=ClassifierMeasurements[c,class]

 

⇐

  
Fig. 6.11 The confusion matrix 

⇒ cm["Accuracy"] 
⇐ 0.9375  
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“ChatGPT is based on the concept of neural nets − originally invented in the 1940s 
as an idealization of the operation of brains. I myself first programmed a neural 
net in 1983 − and it didn’t do anything interesting. But 40 years later, with 
computers that are effectively a million times faster, with billions of pages of text 
on the web, and after a whole series of engineering innovations, the situation is 
quite different. And − to everyone's surprise − a neural net that is a billion times 
larger than the one I had in 1983 is capable of doing what was thought to be that 
uniquely human thing of generating meaningful human language.” Stephen 
Wolfram (2023) 

The short name comes from: ChatGPT →  Chat Generative Pretrained 
Transformer 

7.1  Generative AI 

Synthetic data is information that is not generated by real-world occurrences 
(search engines) but is artificially generated. The difference between ChatGPT 
and Search Engine can be seen in the Table 7.1. 

Table 7.1 The difference between ChatGPT and Search Engine 

Aspect ChatGPT Search Engine 

Nature of Interaction Natural language 
conversion 

Provides a list of 
links/documents 

Way of retrieval 
information 

Generates responses based 
on context 

Retrieves pre-existing  
web pages/documents 

Data Sources Pretrained models and 
knowledge 

Real time indexing of 
web content 

https://doi.org/10.1007/978-3-031-72817-4_7
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-72817-4_7&domain=pdf


 

What is generative AI and how does it work? − The Turing Lectures with Prof. 
Mirella Lapata (Uni. Edinburgh) 

 

 

ImageSynthesize[⇒ ,3] 

⇐

  
Fig. 7.1 Generation three variations of the same image 

 
ImageSynthesize["a kid's drawing of a plane"]⇒  

⇐

  
Fig. 7.2 Generation a kid's drawing 

 
image ofImageS a bridgynthes e in Lonize[" "]don⇒  
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In Fig. 7.1 the sun is there at the upper right corner. Figures 7.1, 7.2, 7.3 and 

7.4 demonstrate how Generative AI can generate graphical objects, which does 

not exist in reality, but are similar to those which we expect (associative memory). 

Generative AI can also create objects, which are only in our imagination, see Fig. 

7.5 inspirated by the film (Matrix).



 

⇐

  
Fig. 7.3 Generation a London bridge 

 
ImageSynthesize["photo realistic image of the face of an Italian

 woman"]

⇒  

⇐

  
Fig. 7.4 Italian woman 

 

 
Fig. 7.5 Error in matrix 
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7.2  Training 

The basic of the training process can be seen on the Fig. 7.6, which represents how 
neural network can learn how to create subsequent word in a text. The text: “cat 
sat on a” can be continued with a word “mat” with 97% probability. The input 
layer of this network contains the text to be continued (the word are the input of 
the nodes (orange) of the input layer, while the predicted subsequent word is the 
output of the node of the output layer (blue). 
 

 
Fig. 7.6 Principle of the training 

 
The actual training has two phases 
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7.3  Transformer 

 

 
Fig. 7.7 Transformer network 

 
It generates always the next word (sub-word: token). Let us consider an earlier 
model GPT2 
model=NetModel[{"GPT2 Transformer Trained on WebText Data",

"Task" "LanguageModeling"}]

⇒
→
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The transformer is a huge network see Fig. 7.7, which represents the structure of 
the Transformer, probably the most important part of a Large Language Model 
(LLM). This figure gives a more detailed information of the principle displayed 
by Fig. 7.6. In case GPT2 model, the structure of real network (transformer) stored 
in the Neural Network Repository of Wolfram Mathematica and its operation is 
demonstrated. 



 

Netchain[⇐

]

 
 
This is a huge network, indeed 

Information[model]⇒  

⇐

 
Let us try to continue the sentence "The weather is" 
Row[{Style[Text@"The weather is",15],Spacer[10],

Dataset[ReverseSort[Association[model["The weather is",

{"TopProbabilities",5}]]],

ItemDisplayFunction (PercentForm[#,2]&)]}]

⇒

→

 

“The weather is” 

 
 
The number of the generated next word is (Fig. 7.8), 
model["The weather is","Probabilities"]//Length⇒  
50205⇐  
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Take[ReverseSort@model["The weather is","Probabilities"],10]⇒  
<| getting 0.0405166, not 0.0366202, good 0.031316, 

so 0.0266264, pretty 0.0243185, going 0.024033, 

still 0.0222684, very 0.0212776, always 0.0186226, 

a 0.0185681|>

⇐ → → →
→ → →
→ → →

→

 

ListLogLogPlot[%]⇒  

⇐

 

Fig. 7.8 The rank of the following words 
 

model["The weather is"]⇒  
getting⇐  

"The weather is"<>" getting"⇒  
The weather is getting⇐  

model[%]⇒  
better⇐  

Nest[StringJoin[#,model[#]]&,"The weather is",10]⇒  
The weather is getting better and the sun is getting brighter.⇐  

SystemOpen["https://www.youtube.com/watch?v=_6R7Ym6Vy_I"]⇒  
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https://www.youtube.com/watch?v=_6R7Ym6Vy_I"]


 

Fig. 7.9. The statistical data of the different versions of the Open AI’s “GPT-n” series 

7.5  Amazing and Amusing Examples 

7.5.1  Verses 

LLMSynthesize["Write a song lyrics in the style of Nick Cave?"]⇒
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7.4  Statistics of the Models 

The statistical data of different versions of the GPT are summarised in Fig. 7.9. 



 

(Verse 1)

In the shadowed city streets

Where demons and angels meet

I dwell in shadows deep

A world where secrets seep

(Chorus)

Oh, the darkness lingers in my veins

As my heart beats in arid plains

Lost in t

⇐

he depths of my despair

I'm just a soul in Nick Cave's lair

(Verse 2)

I've walked through haunted halls

Haunted by forgotten calls

Whispers echo in the night

Decaying souls in mournful plight

(Chorus)

Oh, the darkness lingers in my veins

As my heart beats in arid plains

Lost in the depths of my despair

I'm just a soul in Nick Cave's lair

 

(Bridge)

Broken saints on cobblestone

Searching for redemption to atone

The ghosts of lovers intertwined

Their love turned to dust, sublime

(Chorus)

Oh, the darkness lingers in my veins

As my heart beats in arid plains

Lost in the depths of my despair

I'm just a soul in Nick Cave's lair

(Verse 3)

In a world of shattered dreams

Where nothing's quite as it seems

I wander through crimson skies

Drowning in poetic lies

(Chorus)

Oh, the darkness lingers in my veins

As my heart beats in arid plains

Lost in the depths of my despair

I'm just a soul in Nick Cave's lair

(Outro)

So I'll dance, I'll dance till the morning light

In the arms of the demons I'll find respite

In the embrace of shadows, I'll make my stand

Just another lost soul in Nick Cave's land
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LLMSynthesize["Write a haiku about Lionel Messi"]⇒  
Graceful on the field

Lionel, a football king

Goals and dreams he weaves

⇐

 
 

7.5.2  Joke 

LLMSynthesize["Tell me a joke about a drunkard man and explain me

why it is a joke"]

⇒  

Why did the drunkard man bring a ladder to the bar?

Because he heard the drinks were on the house!

⇐

 
 

Explanation:  
This joke relies on the play on words. In this context, the phrase “on the house” 
usually means that the drinks are free of charge. However, the drunkard man 
misunderstands it literally and assumes that the drinks were located on top of the 
building, so he brings a ladder to reach them. The humor lies in the absurdity of 
his interpretation and his action. 

7.5.3  Riddle 

FindbyProperty=LLMFunction

["What is something that is `1` and `2`and `3`"]

⇒  

LLMFunction[⇐ ]
 

FindbyProperty["Can not walk","crying a lot","sleeping a lot"]⇒  
"A baby"⇐  

 444  7   ChatGPT



 

LLMSynthesize

["Write a Mathematica code which minimizes the size of a square

which contains 3 circles having radius 2, 3, and 4. The code

should compute the coordinates of the centers of these cicrles

a

⇒

nd the side length of the square and plot the circles as well

as the square "]

 

Here is a Mathematica code that solves the problem:⇐
 
 

mathematica

(* *)

r1=2;

r2=3;

r3=4;

(*Define the variables for the center coordinates and the

side length of the square*)

x1,y1=x[1],y[1];

x2,y2=x[2],y[2]

```

Define the radii of the circle

;

x3,y3=x[3],y[3];

s

Defin

s=s;

(* e the objective function to be minimized

{

The circles are contained inside the 

*)

objective=s;

(*Define the constraints*)

constraints=

(* *)

x1-r1>=-s/2,x1+r1<=s/2,y1-r1>=-s/2,y1+r1<=s/2,

x2-r2>=-s/2,x2+r

square

2<=s/

2 2 2

2 2 2

2 2 2

The circles do not ov

2,y2-r2>=-s/2,y2+r2<=s/2,

x3-r3>=-s/2,x3+r3<=s/2,y3-r3>=-s/2,y3+r3<=s/2,

(* *)

(x1-x2)+(y1-y2)>=(r1+r2),

(x1-x3)+(y1-y3)>=(r1+r3),

(x2-x3)+(y2-y3)>=(r2+r3

rlap

)

e

};
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7.5.4  Computer Code 



 

(* Solve the optimization problem *)

sol = NMinimize[

{objective, constraints}, {x1, x2, x3, y1, y2, y3, s}];

(* Extract the solution *)

{x1sol, x2sol, x3sol, y1sol, y2sol,

y3sol, ssol} = {x1, x2, x3, y1, y2, y3, s} /. sol[[2]];

(* Print the solution *)

Print["Center of circle 1: (", x1sol, ",", y1sol, ")"];

Print["Center of circle 2: (", x2sol, ",", y2sol, ")"];

Print["Center of circle 3: (", x3sol, ",", y3sol, ")"];

Print["Side length of the square: ", ssol];

(* Plot the circles and the square *)

circle1 = Graphics[{Circle[{x1sol, y1sol}, r1], Red}];

circle2 = Graphics[{Circle[{x2sol, y2sol}, r2], Green}];

circle3 = Graphics[{Circle[{x3sol, y3sol}, r3], Blue}];

square = Graphics[{EdgeForm[Black], FaceForm[None], 

Rectangle[{-ssol/2, -ssol/2}, {ssol/2, ssol/2}]}];

Show[{circle1, circle2, circle3, square}, Axes True, 

PlotRange All]

→
→

 

This code defines the radii of the circles as `r1`, `r2`, and 

`r3`. It then defines the variables for the center coordinates 

(`x1`, `x2`, `x3`, `y1`, `y2`, `y3`) and the side length of the 

square (`s`).

The objective function to be minimized is the 

side length of the square. The constraints ensure that the 

circles are contained inside the square and do not overlap.

The code uses `NMinimize` to solve the optimization problem, 

and extracts the solution. It then prints the coordinates 

of the centers of the circles and the side length of the square.

Finally, the code uses `Graphics` to plot the circles and the 

square, with different colors for each circle. The `Show` 

function combines the individual graphics objects and displays 

the plot with axes and a suitable plot range.

 

Center of circle 1: (-3.61931,-3.85845)

Center of circle 2: (2.97487,-2.97487)

Center of circle 3: (-1.97487,1.97487)

Side length of the square: 11.9497

 

See Fig. 7.10. 
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Fig. 7.10 Computer code generated and evaluated by GPT 

 

 

7.5.5  Vision 

ImageSynthesize["Show a green mouse wich jumping with a parachute"]⇒  

See Fig. 7.11. 
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Fig. 7.11 Image of a green mouse that is jumping with a parachute made by Generative AI



 

ImageSynthesize["A painting of a cat in the style of Dali"]⇒

 
See Fig. 7.12. 

⇐

  
Fig. 7.12 Image of a painting of a cat in the stile of Dali made by Generative AI 

 
ImageSynthesize["Brain sitting on a rocket flying to moon"]⇒

 
See Fig. 7.13. 

⇐

  
Fig. 7.13 Image of a brain sitting on a rocket flying to Moon made by Generative AI 

 
ImageSynthesize["A cat having hat and smoking a cigar"]⇒

 
See Fig. 7.14. 

 448  7   ChatGPT



 

⇐

  
Fig. 7.14 Image of a cat having hat and smoking cigar made by Generative AI 

7.6  Outlook and Final Remarks 

A generative model is a type of machine learning model that aims to learn the 
underlying patterns or distributions of data in order to generate new, similar data. 
In essence, it's like teaching a computer to dream up its own data based on what it 
has seen before. The significance of this model lies in its ability to create, which 
has vast implications in various fields, from art to science.  

Out of LLM (Large Language Model) as GPT there are different models for 
the Generative AI, too. See for example MIT Introduction to Deep Learning 
6.S191: Lecture 4 Deep Generative Modeling (Lecturer: Ava Amini). 
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Variational Autoencoders (VAEs) are a type of autoencoder that produces a 
compressed representation of input data, then decodes it to generate new data. 
They're often used in tasks like image denoising or generating new images that 
share characteristics with the input data. 

Generative Adversarial Networks (GANs) consist of two neural networks, the 

generator and the discriminator, that are trained together. The generator tries to 

produce data, while the discriminator attempts to distinguish between real and 

generated data. Over time, the generator becomes so good that the discriminator 

can't tell the difference. GANs are popular in image generation tasks, such as 

creating realistic human faces or artworks. In hydroclimate application for 

example. Wang et al. (2025) introduced the DownGAN generative adversarial 

network, which downscales Gravity Recovery and Climate Experiment (GRACE) 

total water storage anomalies (TWSA) from 300 km to 25 km, as exemplified in 

the Yangtze River Basin (YRB) and the Nile River Basin (NRB). 
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SystemOpen["https://www.youtube.com/watch?v=3G5hWM6jqPk"]⇒  

Classical computers get overwhelmed by exponential calculations when it 
comes to these enormous amounts of data… plus AI and machine learning 
algorithms need parallel computations hence quantum processing is the perfect 
candidate. 

What is the effect of the AI on the future of the humanity? Undoutabtedly it 
can be used for good but as well as for bad things, like the nuclear power: AI is 
the nuclear bomb of our age − Henry Kissinger. 

References 

 
Wang, J., Shen, Y., Awange, J., Tabatabaeiasl, M., Song, Y., & Liu, C. (2025). A novel generative 

adversarial network and downscaling scheme for GRACE/GRACE-FO products: Exemplified by 
the Yangtze and Nile River Basins. Science of the Total Environment, 969, 178874. 
https://doi.org/10.1016/j.scitotenv.2025.178874  

Wolfram S (2023) What is ChatGPT doing ... and why does it work?, Copyright © 2023 Stephen 
Wolfram, LLC 


	Preface to the First Edition
	Preface to the Second Edition
	Acknowledgements
	Contents
	Introduction
	1 Computer Vision and Machine Learning
	2 Python and Mathematica
	Literatures for the Introduction

	Chapter 1  Dimension Reduction
	1.1 Principal Component Analysis
	1.1.1 Principal Component
	1.1.2 Singular Value Decomposition
	1.1.3 Karhunen-Loeve Decomposition
	1.1.4 PCA and Total Least Square
	1.1.5 Image Compression
	1.1.6 Color Image Compression
	1.1.7 Image Compression in Python

	1.2 Independent Component Analysis
	1.2.1 Independent Component Analysis
	1.2.2 Image Compression via ICA

	1.3 Discrete Fourier Transform
	1.3.1 Data Compression via DFT
	1.3.2 DFT Image Compression

	1.4 Discrete Wavelet Transform
	1.4.1 Concept of Discrete Wavelet Transform
	1.4.2 2D Discrete Wavelet Transform
	1.4.3 DWT Image Compression

	1.5 Radial Basis Function
	1.5.1 RBF Approximation
	1.5.2 RBF Image Compression

	1.6 AutoEncoding
	1.6.1 Concept of AutoEncoding
	1.6.2 Simple Example
	1.6.3 Compression of Image

	1.7 Fractal Compression
	1.7.1 Concept of Fractal Compression
	1.7.2 Illustrative Example
	1.7.3 Image Compression with Python
	1.7.4 Accelerating Fractal Code Book Computation

	1.8 Comparison of Dimension Reduction Methods
	1.8.1 Measure of Image Quality
	1.8.2 Comparing Different Images
	1.8.3 Compression of Mandala

	References

	Chapter 2  Classification
	2.1 KNearest Neighbors Classification
	2.1.1 Small Data Set
	2.1.2 Vacant and Residential Lands

	2.2 Logistic Regression
	2.2.1 Iris Data Set
	2.2.2 Digit Recognition

	2.3 Tree Based Methods
	2.3.1 Playing Tennis Today?
	2.3.2 Snowmen and Dice

	2.4 Support Vector Classification
	2.4.1 Margin Maximization
	2.4.2 Feature Space Mapping
	2.4.3 Learning Chess Board Fields

	2.5 Naive Bayes Classifier
	2.5.1 Playing Tennis Today?
	2.5.2 Zebra, Gorilla, Horse and Penguin

	2.6 Fisher Discriminant
	2.6.1 Linear Fisher Discriminant
	2.6.2 Fisher Discriminant with Kernel
	2.6.3 Using Polynomial Kernel
	2.6.4 Using Kernels in R3

	2.7 Comparison of Classification Methods
	References

	Chapter 3  Clustering
	3.1 KMeans Clustering
	3.1.1 Small Data Set
	3.1.2 Clustering Images

	3.2 Hierarchical Clustering
	3.2.1 Dendrogram for Small Data Set
	3.2.2 Image Segmentation

	3.3 Density-Based Spatial Clustering of Applications with Noise
	3.3.1 Data Set Moons
	3.3.2 Segmentation of MRI of Brain

	3.4 Spectral Clustering
	3.4.1 Nonlinear Data Set Moons
	3.4.2 Image Coloring

	3.5 Comparison of Clustering Methods
	3.5.1 Measurement of Quality of Cluster Analysis
	3.5.2 Optimal Number of Clusters
	3.5.3 Segmentation of Parrot Image

	3.6 Convert a Time Series into Image
	3.6.1 Gramian Angular Field
	3.6.2 Numerical Illustration
	3.6.3 Comparing Two Time Series

	References

	Chapter 4  Regression
	4.1 KNearest Neighbors Regression
	4.1.1 Analysing KNeighbors Regressor
	4.1.2 Surface Reconstruction

	4.2 Linear Regression Models
	4.2.1 Small Data Set
	4.2.2 Generalization of the Ordinary Least Square (OLS)
	4.2.3 Ridge Regression
	4.2.4 Lasso Regression
	4.2.5 Elastic Net Regression
	4.2.6 Stitching Images

	4.3 Non-Linear Regression Models
	4.3.1 Polynomial Regression
	4.3.2 Support Vector Regression (SVR)
	4.3.3 Boundary of the Saturn Ring

	4.4 Robust Regression Models
	4.4.1 Local Regression (loess)
	4.4.2 Expectation Maximization
	4.4.3 Maximum Likelihood Estimation
	4.4.4 RANSAC for Linear Models
	4.4.5 Fitting Lidar Cloud of Points to a Slope

	4.5 Symbolic Regression Models
	4.5.1 Model with Single Variable
	4.5.2 Surface Fitting

	4.6 Comparison of Regression Methods
	References

	Chapter 5  Neural Networks
	5.1 Single Layer Perceptron
	5.1.1 Single Layer Perceptron Classifier

	5.2 Multi Layer Perceptron
	5.2.1 Multi Layer Perceptron Classifier
	5.2.2 Multi Layer Perceptron Regressor

	5.3 Hopfield Network
	5.3.1 Recovery of Digits
	5.3.2 Reconstruction of Deteriorated Images

	5.4 Unsupervised Network
	5.4.1 Illustrative Example
	5.4.2 Iris Data Set
	5.4.3 Voronoi Mesh
	5.4.4 Robust Regression
	5.4.5 Kohonen Map
	5.4.6 Fitting Sphere to Point Cloud Data

	5.5 Recurrent Network
	5.5.1 Sequence to Sequence
	5.5.2 Time Series Prediction
	5.5.3 A Simple Optical Character Recognition

	5.6 Deep Neural Network
	5.6.1 Dropout
	5.6.2 ReLU
	5.6.3 Softmax Layer
	5.6.4 Cross Entropy Loss
	5.6.5 Stochastic Gradient Descent
	5.6.6 Batch
	5.6.7 Mini Batch
	5.6.8 GPU
	5.6.9 Classifying Double Spirals

	5.7 Convolutional Neural Networks
	5.7.1 Problems in Computer Vision
	5.7.2 Feature Extraction via AutoEncoder
	5.7.3 Respective Fields
	5.7.4 Image Convolution
	5.7.5 Spatial Pooling
	5.7.6 Feature Extraction via CNN
	5.7.7 Image Classification
	5.7.8 Image Clustering
	5.7.9 Object Localization and Identification
	5.7.10 Cat or Dog?

	5.8 Comparison of Neural Networks
	References

	Chapter 6  Optimizing Hyperparameters
	6.1 Data
	6.2 Classification Model
	6.3 Quality of Classification
	6.4 Optimization of the Hyperparameters
	6.5 Optimization Methods
	6.5.1 Simulated Annealing
	6.5.2 Differential Evolution
	6.5.3 Random Search
	6.5.4 Black Hole
	Reference


	Chapter 7  ChatGPT
	7.1 Generative AI
	7.2 Training
	7.3 Transformer
	7.4 Statistics of the Models
	7.5 Amazing and Amusing Examples
	7.5.1 Verses
	7.5.2 Joke
	7.5.3 Riddle
	7.5.4 Computer Code
	7.5.5 Vision

	7.6 Outlook and Final Remarks
	References


